Projecting the Impacts of Climate Change
Published on by Water Network Research, Official research team of The Water Network in Academic
Joint Program researchers advocate for improved modeling approach.
By Mark Dwortzan | Joint Program on the Science and Policy of Global Change
Representative image, Source: Pixabay
How might climate change affect the acidification of the world’s oceans or air quality in China and India in the coming decades, and what climate policies could be effective in minimizing such impacts? To answer such questions, decision makers routinely rely on science-based projections of physical and economic impacts of climate change on selected regions and economic sectors.
But the projections they obtain may not be as reliable or useful as they appear: Today’s gold standard for climate impact assessments — model intercomparison projects (MIPs) — fall short in many ways.
MIPs, which use detailed climate and impact models to assess environmental and economic effects of different climate-change scenarios, require international coordination among multiple research groups, and use a rigid modeling structure with a fixed set of climate-change scenarios. This highly dispersed, inflexible modeling approach makes it difficult to produce consistent and timely climate impact assessments under changing economic and environmental policies.
In addition, MIPs focus on a single economic sector at a time and do not represent feedbacks among sectors, thus degrading their ability to produce accurate projections of climate impacts and meaningful comparisons of those impacts across multiple sectors.
To overcome these drawbacks, researchers at the MIT Joint Program on the Science and Policy of Global Change propose an alternative method that only a handful of other groups are now pursuing: a self-consistent modeling framework to assess climate impacts across multiple regions and sectors. They describe the Joint Program’s implementation of this method and provide illustrative examples in a new study published in Nature Communications.
The Joint Program method is essentially a next-generation Integrated Assessment Model (IAM). IAMs typically come in two forms — either as simple climate models coupled with algorithms that translate increases in average global surface temperature into environmental and economic damages known as the social cost of carbon; or as more detailed Earth-system models with continually improving representation of physical impacts, coupled with economic models.
The Joint Program IAM integrates a geospatially resolved physical representation of climate impacts into a coupled human and Earth system modeling framework.
Developed over the past 26 years, the MIT Integrated Global System Modeling (IGSM) framework allows researchers to custom-design climate-change scenarios and assess climate impacts under those scenarios. For a given climate change scenario, they can use the framework to analyze the chain of physical changes at the regional and sectoral levels, and then estimate economic impacts at those levels.
Read full article: MIT
Media
Taxonomy
- Disaster Prevention
- Modeling
- Climate Change
- Climate Change Adaptation
- Disaster Relief
- Climate Change Resilience
- Climate Protection
- Climate Risk