New Solution to Harmful Algal Blooms Raises Hope of Economic and Environmental Benefits
Published on by Water Network Research, Official research team of The Water Network in Academic
A cheap, safe and effective method of dealing with harmful algal blooms is on the verge of being introduced following successful field and lab tests.
Moves to adopt use of hydrogen peroxide (H2O2) as an effective treatment against toxic algae are already underway following the results of new research by a team from the John Innes Centre and the University of East Anglia (UEA.)
Fish killer - Prymnesium Parvum - Photo by Dr Martin Rejzek John Innes Centre
Source: JIC
Successful trials last summer showed that H2O2 was effective against the golden algae, Prymnesium parvum . This is responsible for millions of fish kills worldwide each year and a threat to the £550m economy of the Broads National Park where trials are taking place.
Now follow up lab tests have demonstrated that controlled doses of the versatile chemical compound could be even more effective in dealing with cyanobacteria commonly known as blue green algae - a major public health hazard and potentially fatal to dogs and livestock.
Some of these exciting results are published today in the journal Biochemical Society Transactions along with a series of other scientific developments related to algal communities in the Broads National Park; one of the UK’s most popular and environmentally important network of waterways.
Dr Ben Wagstaff, one of the authors of the study from the John Innes Centre said: “We’ve demonstrated that the use of hydrogen peroxide is a practical, relatively easy way of managing these blooms.
“Work has already started to put together protocols for the use of hydrogen peroxide to control Prymnesium and our research showed that blue green algae are even more susceptible. You can potentially use even lower doses to wipe out blue-green blooms.”
The work in the Broads National Park could have widespread implications for the way harmful algal blooms are managed in waterways worldwide.
Steve Lane, Fisheries Technical Specialist at the Environment Agency which is helping to implement the research said: “It is really exciting how scientists, fishery managers, the angling community and partners have worked together and made such important progress to tackle Prymnesium , which is a serious threat to the multi-million-pound angling economy of the Broads. We are now working hard to make sure that we can use hydrogen peroxide to help manage future incidents, guided by the wonderful world-leading work that has taken place right here in Norwich."
Dr Wagstaff says that it’s not practical to treat much larger water systems in this way. But the adoption of H2O2 in smaller lakes and watercourses popular for sailing and water pursuits means they would no longer have to close for long periods when blooms occur.
Fisheries also stand to gain with the team already working with one business in Suffolk to deal with an outbreak of harmful blooms.
Following successful field trials at Hickling Broad, Norfolk, last summer, detailed laboratory tests have been carried out which demonstrate how the H2O2 treatment impacts the complex array of species in the water.
The tests showed that within two hours blue-green algae is significantly reduced by doses of H2O2 to a greater extent even than Prymnesium and other algal organisms.
The tests showed that fish and macroinvertebrates were unharmed by the treatment.
***
Exciting research promises further breakthroughs
Other ongoing work highlighted by the John Innes Centre and UEA research team includes:
- Using advances in DNA sequencing to monitor composition and abundance of algal blooms and the virus which infects Prymnesium algae causing it to spill fish-killing toxins into the water
- Studying the chemistry of toxins produced by Prynmesium to aid early warning detection and possible use as an organic compound
- Investigations into a lytic virus discovered on Hickling Broad which infects Prymnesium causing it to spill its toxic cell material into the water. This work is addressing fundamental questions about the effect of viral infection on toxin production and release in microalgae
- In another exciting development, researchers from the UEA have identified and isolated the strain of Prymnesium algae that is specific to the Broads system
With the results of fundamental research likely to be several years away, there is a current need for practical solutions to mitigate a growing rise in harmful algal blooms caused by rising temperatures and eutrophication, the report in Biochemical SocietyTransactions states.
Factfile – algal blooms
- Blue-green algae is the name given to cyanobacteria - a group of bacteria. When the algae blooms, a blue green scum often appears on the edges of lakes, and ponds. It produces harmful toxins which impair liver function – often fatally – in dogs. In humans, cyanobacteria can cause a range of symptoms including skin rashes, fever and headaches, muscle pain and breathing impairment
- Prymnesium parvum - the golden algae is of concern to anglers and aquaculture industry because it produces the toxin Prymnesin. It is not harmful to humans or cattle, but can turn waters deadly for fish in a matter of hours
- Hydrogen Peroxide (H2) - Best known as a hair bleaching agent (using strong concentrations), hydrogen peroxide has a range of uses depending on the dosage. It can be used as an antiseptic mouthwash, and laundry whitener. It is already used by the Environmental Agency to aerate water when oxygen levels dip – another reason why its use in tackling blooms is more cost effective than commercial algaecides. After use, it breaks down harmlessly into water and oxygen so offers strong environmental benefits compared with some commercial algaecides
A cheap, safe and effective method of dealing with harmful algal blooms is on the verge of being introduced following successful field and lab tests.
Read full article: John Innes Centre
Reference: Insights into toxic Prymnesium parvum blooms: the role of sugars and algal viruses
Media
Taxonomy
- Decontamination
- Algaecides
- Contaminant Removal
- River Studies
- Algae
- Pollution
- River Restoration
- Algae Treatment
- Pollution