Research: Producing Methane from CO2, Water and Renewable Energy
Published on by Water Network Research, Official research team of The Water Network in Technology
Around 700 billion microorganisms are producing methane from CO2, water and renewable energy in the STORE&GO research facility, as Dr Frank Graf from DVGW Research Centre at Engler-Bunte-Institute of Karlsruhe Institute of Technology (KIT) describes.
A key element for the sustainable transition of the European energy system is the efficient storage of renewable energy, especially of volatile solar and wind power. The power-to-gas technology can store renewable energy and – by adding CO2 from natural sources – convert it to emission-free methane. In Zuchwil, Switzerland, a research facility has now started to operate within the STORE&GO project where microorganisms are the protagonists of the process.
On January 28, 2019, everything on the Aarmatt areal of the Swiss energy company Regio Energie Solothurn revolved around their latest employees: around 700 billion microorganisms, known as Archaea. They are now producing methane from carbon dioxide and hydrogen in the STORE&GO PtG demonstration facility in a process called biological methanation.
At the demo site, hydrogen is produced by electrolysis, which is powered by nearby renewable energy sources. The gas from the electrolyser is fed to a bioreactor containing Archaea microorganisms along with CO2 from a nearby wastewater treatment plant. The microorganisms then transform the hydrogen and CO2 into methane (CH4). This renewable gas can be injected into the communal gas network of Regio Energie Solothurn and offers a unique opportunity to store energy and recycle carbon dioxide (CO2).
The biological methanation plant complements the existing hybrid plant of the Regio Energie Solothurn and is being developed in collaboration with the partners Electrochaea, the University of Applied Sciences Rapperswil (HSR), the Ecole Polytechnique fédérale Lausanne (EPFL), the Swiss Federal Laboratories for Materials Testing and Research (EMPA) and the Swiss Association for Gas and Water (SVGW).
Read more on How to improve social acceptance of innovative technologies on the Open Access Government website.
Media
Taxonomy
- Energy
- Water-Energy Nexus
- Methanol
- Renewable Energy
- Renewable Energy Technologies
- Renewable Energy
- Renewable Energy Power
- Renewable Water Resources
- Renewable Energy