Heavy Metals Removal from Domestic Sewage in Constructed Wetlands using Tropical Wetland Plants

Published on by in Academic

Heavy Metals Removal from Domestic Sewage in Constructed Wetlands using Tropical Wetland Plants

Abstract

Constructed wetlands are an affordable and reliable green alternative to conventional mechanical systems for treating domestic sewage. This study investigates the potential of 14 tropical wetland plant species for removing heavy metals from domestic sewage through the bioconcentration factor (BCF), translocation factor (TF), enrichment factor (EF), and geoaccumulation index (Igeo) using batch mesocosm studies. Plants with BCF > 1 and TF > 1 are classified as phytoextractors, while species with BCF > 1 and TF < 1 are phytostabilisers. The results indicate that 11 out of 14 species are magnesium phytostabilisers, 10 are calcium phytoextractors, and no plant species demonstrate ferrum phytoextraction properties. As for manganese phytoremediation, only three species depicted phytoextraction and phytostabilisation properties. The enrichment factor (EF) for all of the studied metals with ferum as a reference metal in all of the soil samples decreased after the phytoremediation of domestic sewage experiments, indicating depletion to mineral enrichment (EF < 2). All of the soil samples are generally classified as uncontaminated based on Igeo indices. Based on the factors and indices, it is suggested that the plants may have facilitated heavy metal removal from domestic sewage through uptake into the plant tissues from the roots.

SOURCE MDPI

Taxonomy