Data Mining to Protect Groundwater Quality

Published on by in Academic

Data Mining to Protect Groundwater Quality

Ohio University's Appalachian Watershed Research Group (AWRG) is assessing data collected from regional mining operations in a first-of-its-kind study, to better predict how groundwater levels will respond to mining. 

ohiou.jpgThe research group, a multidisciplinary team of undergraduate and graduate students, staff, and faculty from across the Athens campus, have pulled together a team from Geological Sciences and the Voinovich School of Leadership and Public Affairs' Environmental Studies program for the completion of this project.

The goal is to create a geospatial tool to model potentially negative environmental impacts from mining operations in the future.

What's on the surface: A history of mines

The State of Ohio has a long legacy of resource extraction – and the land shows it.

Geographic Information Systems (GIS) maps created from state agency databases, including the Ohio Department of Natural Resources (ODNR) Divisions of Mineral Resource Management and Water Resources, as well as the Ohio Geological Survey, reveal the right-most portion of the state riddled with wells and boreholes in addition to a swath of surface mines and other oil and gas industry activity.

tunnel-957963_960_720 (1).jpgOhio's rich mining legacy has had long-standing effects on the surrounding environment, most visibly as orange-red rivers via a chemical reaction called acid mine drainage. It's an issue that's plagued southeastern Ohio for more than 100 years.

Found throughout Appalachia, acid mine drainage occurs when pyrite, a mineral in coal, is exposed to both water and oxygen. The reaction often originates in underground pools that form in coal mines, which can then flood and discharge into the external environment. This discharge can adversely affect the biology or chemistry – or both – of surrounding waterways, thus impacting the region's surface water.

Regulators and mining companies do not currently have an accurate, technology-based mechanism for assessing the probability of the formation of these mine pools. Reclamation and remediation of acid mine drainage impacts can cost federal and state governments millions of dollars each year.

"We are aiming to improve predictions of post-mining water levels to prevent polluting discharges in the first place," Voinovich School Associate Professor Dr. Natalie Kruse, one of the project team leaders, said.

Potential for impact: An old problem, a new solution

The ultimate goal of the project, with guidance from the Appalachian Watershed Research Group's senior technological expertise, is to create a GIS-based prediction tool to prevent future environmental disruptions – and economic costs – from acid mine drainage impacts.

"Acid mine drainage is a very expensive reclamation problem in Ohio. Instead of spending all this money to fix it after the mine has already been exploited, it would be more beneficial to try and reduce the environmental impact of the mines before they go in and start mining," Schafer said.

In early December 2017, the Research Group team previewed their preliminary research findings to representatives from the Ohio agencies and mining industries whose data the project group has been utilizing for the past 6 months.

"It was more interactive," Twumasi said, reflecting on the meeting. "We told them what we found, they also told us what they really expect from us, and at the end of the day they were so happy at the progress we've made."

As the team prepares to advance into the tool-creation side of the project, the four students are motivated by the opportunity to make an impact on an environmental issue of regional significance.

"I always struggled with the idea of 'Why does the research matter?'" Steinberg said. "When you get into environmental studies, there's so many other aspects to it; there's an actual reason that we're studying the things we do."

Source: Phys.org

Media

Taxonomy