Innovative System Images Photosynthesis to Provide Picture of Plant Health

Published on by in Technology

Innovative System Images Photosynthesis to Provide Picture of Plant Health

Researchers have developed a new imaging system that is designed to monitor the health of crops in the field or greenhouse.

The new technology could one day save farmers significant money and time by enabling intelligent agricultural equipment that automatically provides plants with water or nutrients at the first signs of distress. With further development, the system has the potential to be used aboard unmanned aerial vehicles to remotely monitor crops.

PJTxEPS.jpg

A new fluorescence imaging system uses a large imaging area to provide information about plant health. It is designed for use in greenhouses or in the field and could one day enable farm machinery that automatically responds to plants showing stress. Image Credit:  Haifeng Li, Zhejiang University.

The imaging system detects fluorescence emitted from chlorophyll, a pigment that gives plants their green color and is essential for absorbing the sunlight plants use to create energy through photosynthesis. Monitoring chlorophyll and how photosynthesis is performed in a plant provides insight into the health and growth of the plants.
 
In The Optical Society journal  Applied Optics , researchers led by Xu Liu from Zhejiang University in China detail their new crop imaging system. It can image an area measuring 45 by 34 centimeters, about four times larger than commercially available chlorophyll imagers.

“Most instruments used for chlorophyll fluorescence imaging are only suitable for laboratory use, but we want to develop a system that can monitor crop health in a field or greenhouse,” said Haifeng Li, a member of the research group. “The large detection area of our crop imager brings us closer to that goal.”
 
In addition to helping farmers check crop health, the new system will be helpful for studying how plants respond to changes in growing conditions and for high-throughput phenotyping, an automated method used in crop research and development to analyze how genetic modifications affect plant characteristics such as leaf size or drought resistance in a large number of plants. The technique could also be modified for microscopy, allowing imaging of photosynthesis inside the plant cells.
 
“Chlorophyll fluorescence imaging has been widely used in academic research,” said Li. “Our system will allow this technique to move beyond the lab, where it can be used to develop and study crops with higher yield, for example.”
 
More data provides a better picture
The limited imaging area of commercially available chlorophyll fluorescence imagers restricts these instruments to imaging, at most, one or two seedlings at a time. In fact, some imagers only capture fluorescence from a few leaves at a time. Because photosynthesis can vary from plant to plant and even from leaf to leaf, many images would have to be acquired to get a picture of overall crop growth.
 
In one picture, the new crop imager can capture fluorescence from seven or eight seedlings, depending on their size. These additional plants provide enough data to get a true picture of crop health from just one image. The researchers also incorporated a scanning mechanism that increases the imaging area to 2 meters wide.
 
“By acquiring a large amount of data, our system can significantly reduce the error involved in analyzing the physiological status of a crop and the monitoring efficiency of crop growing conditions, without requiring repeated sampling,” said Li.  

Read full article: The Optical Society

Media

Taxonomy