8 Ways Big Data is Helping Water Security
Published on by Water Network Research, Official research team of The Water Network in Technology
Big Data is Transforming Agriculture, Here Are Eight Ways Big Data is Helping to Create a More Water- and Food-secure World
Big Data is transforming agriculture, and just in time. The demand for food is expected todouble by 2050as the world's population heads toward 9 billion people and increasing incomes allow many more to afford a better diet. Lack of water is a critical constraint to increasing food production, particularly as droughts and other consequences of climate change are making water scarcer.
To help solve this enormous challenge, the agriculture and water communities are harnessing Big Data to ramp up food production with less pressure on our water resources. Experts from around the world gathered in Seattle this week at theWater for Food Global Conferenceto discuss ways to harness this data revolution in agriculture.
With that in mind, here are eight ways Big Data is helping to create a more water- and food-secure world.
1. Satellite imagery and data
Satellites gather vast amounts of data that are used at global and local scales. For example, satellites can track atmospheric patterns, precipitation and ocean currents. Combined with weather data, researchers areusing satellite datato develop better forecasting and risk-management tools to help farmers, whether in Nebraska or Ethiopia, make better decisions, and to help governments better plan for droughts and floods.
2. Groundwater monitoring
Globally, agriculture consumes 70 percent of all freshwater withdrawals, primarily for irrigation, and groundwater is a key source of irrigation water. Data regarding aquifer conditions, groundwater withdrawals and other metrics are critical for water managers to prevent catastrophic aquifer depletions. Although water metering to potentially regulate use is unpopular — most recently in California as the stateundertakes new groundwater management rules— it's been successfully used in areas of Nebraska for more than 40 years to help maintain groundwater levels, despite having the most irrigated acres in the nation.
3. Viewing advantages
These days, most people are familiar with the potential of drones outside the military.In agriculture, drones will help farmers, water managers and researchers peer into places otherwise difficult to see. They capture images of entire fields and can zoom into individual leaves to determine the plant's condition. Researchers are developing drones to go beyond capturing images to actually interact with the environment, taking leaf samples, gathering water samples, measuring crop height or applying herbicides to individual plants.
Cameras — and the ability to process huge data files — are giving us new perspectives on our world. In one example, the Platte Basin Timelapse Project from the University of Nebraska-Lincoln placed more than 40 cameras along the entire length of the Platte River watershed, from the headwaters in the Colorado Rockies through Nebraska to the Missouri River. The cameras take a picture every daylight hour. The visual timeline gives scientists, resource managers and the public a greater understanding of the influences agriculture, municipal water supplies, geological processes, restoration projects and other activities have on the watershed, leading to better watershed management.
4. Precision agriculture
Precision agriculture defies the stereotype of farmers as low-tech traditionalists. Today, a host of technology from GPS-equipped tractors to remote-controlled or evenautomated irrigation systemsis turning farming into a high-tech business.
Water sensors placed throughout a field monitor soil moisture in real-time, which help a farmer decide when and how much to irrigate. Fed to computer-controlled irrigation systems, that information allows precise water applications rather than a single amount across an entire field.
5. Global atlases
Where in the world do we have existing farmland with the capacity to produce much higher, stable yields? Which river basins are running dry, and why? Researchers are gathering and analyzing satellite, atmospheric, on-the-ground and historic data to create mapping tools and models that help governments and others improve agriculture and conserve water.
For example, theGlobal Yield Gap and Water Productivity Atlas, a global collaboration led by the Water for Food Institute, identifies existing farmland worldwide where significant gaps exist between actual and potential yields for different crops. The atlas estimates global yield trends and food security for global analyses and, perhaps more important, helps individual countries identify production potential to improve policy and to better strategize resource allocations and trade opportunities.
6. Regional mapping
Countries are taking on their own Big Data projects to better plan for the future. Sri Lanka, for example, recently began mapping many of its primary river basins and modeling climate risks to develop a comprehensive flood and drought mitigation plan. In the Dominican Republic, I participated in a project that created a spatial database of the country's entire irrigated properties. The data allows water managers to better maintain the country's extensive irrigation canal systems, conserve water and create equity among water users.
7. Smartphones
Big Data analysis and modeling can reach even subsistence farmers in remote areas. Many farmers in poor, rural areas in sub-Saharan Africa and elsewhere, long isolated by insufficient phone service and roads, have cellphones. They now have access to weather forecasting and market information to make better decisions, manage money and develop a wider support network, thereby improving livelihoods as well as local water and food security.
8. Research advances
Science is driven by data. Greater data gathering and computing power is allowing researchers to develop drought-resistant crop breeds, better understand climate change and create models that help us understand risks and opportunities moving forward, among other research goals.
Much data is flowing in agriculture, creating numerous opportunities to increase food production without compromising limited water resources. But many challenges remain to ensure the data flows efficiently and to those who need it most.
Read More Related Content On This Topic - Click Here
Media
Taxonomy
- Agriculture
- Technology
- IT