Genetic Tool to Improve Arsenic Studies
Published on by Water Network Research, Official research team of The Water Network in Academic
Utah State University College researchers developed a new tool used in DNA amplification -- that simplifies the process of identifying bacteria found in soil and groundwater samples.
Of interest are the bacteria species equipped with arsenate reductase genes. The genes enable bacteria to transform naturally occurring arsenic into a more toxic version of the element. The team's findings were published Feb. 1 in Applied and Environmental Microbiology -- a leading journal, covering topics in biotechnology, microbial ecology, food microbiology and industrial microbiology.
Dr. Babur Mirza takes a groundwater sample from a well in Logan, Utah.
The authors explain that various bacteria transform, or reduce, arsenic V -- known as arsenate -- into arsenic III -- known as arsenite. Arsenite is more toxic to humans and is more mobile, meaning it moves through the environment more easily and can infiltrate groundwater.
Researchers say a better understanding of the microbial ecosystems that release arsenite is an important first step in reducing the prevalence of arsenic contamination in groundwater.
"Arsenic contamination is one of the biggest problems in drinking water all over the world," said Dr. Babur Mirza, a researcher at USU's Utah Water Research Lab and lead author on the study. "This new primer makes it easier for us to see which species of bacteria are present in a sample and whether they have the gene that we're looking for."
The new primer -- a short strand of DNA that targets the arsenate reductase gene -- helps researchers identify which bacteria in a sample have the genes. Without this primer, researchers had to first grow the bacterial cells in a laboratory before extracting their DNA and amplifying the gene. Such steps often reduced microbial diversity and led to biased results.
"Now we can simply add the primer into the reaction and we get quantifiable copies of the reductase genes," said Mirza. "The copied genes show us which bacteria species are in the sample and tell us new information about the diversity of arsenate-reducing microorganisms."
Read more details at Source: ScienceDaily
Media
Taxonomy
- Water
- Public Health
- Arsenic
- Pollutants
- Treatment
- Biological Treatment
- Micropollutants
- Groundwater
- Groundwater Pollution
- Ground Engineering
- Central Ground Water Board
- Pollution