Greenland is Melting
Published on by Water Network Research, Official research team of The Water Network in Social
Brandon Overstreet, a PhD candidate and his team are collecting data that could yield groundbreaking information on the rate at which the melting of Greenland ice sheet will drive up sea levels in the coming decade
The midnight sun still gleamed at 1 a.m. across the brilliant expanse of the Greenland ice sheet. Brandon Overstreet, a doctoral candidate in hydrology at the University of Wyoming, picked his way across the frozen landscape, clipped his climbing harness to an anchor in the ice and crept toward the edge of a river that rushed downstream toward an enormous sinkhole.
If he fell in, “the death rate is 100 percent,” said Mr. Overstreet’s friend and fellow researcher, Lincoln Pitcher.
But Mr. Overstreet’s task, to collect critical data from the river, is essential to understanding one of the most consequential impacts of global warming. The scientific data he and a team of six other researchers collect here could yield groundbreaking information on the rate at which the melting of Greenland ice sheet, one of the biggest and fastest-melting chunks of ice on Earth, will drive up sea levels in the coming decades. The full melting of Greenland’s ice sheet could increase sea levels by about 20 feet.
“We scientists love to sit at our computers and use climate models to make those predictions,” said Laurence C. Smith, head of the geography department at the University of California, Los Angeles, and the leader of the team that worked in Greenland this summer. “But to really know what’s happening, that kind of understanding can only come about through empirical measurements in the field.”
For years, scientists have studied the impact of the planet’s warming on the Greenland and Antarctic ice sheets. But while researchers have satellite images to track the icebergs that break off, and have created models to simulate the thawing, they have little on-the-ground information and so have trouble predicting precisely how fast sea levels will rise.
Their research could yield valuable information to help scientists figure out how rapidly sea levels will rise in the 21st century, and thus how people in coastal areas from New York to Bangladesh could plan for the change.
Each year, the federal government spends about $1 billion to support Arctic and Antarctic research by thousands of scientists like Dr. Smith and his team. The agency officials who receive that money from Congress, including the directors of the National Science Foundation, NASA and the National Oceanic and Atmospheric Administration, say the research is essential for understanding the changes that will affect the world’s population and economies for more than a century.
But the research is under increasing fire by some Republican leaders in Congress, who deny or question the scientific consensus that human activities contribute to climate change.
Leading the Republican charge on Capitol Hill is Representative Lamar Smith of Texas, the chairman of the House science committee, who has sought to cut $300 million from NASA’s budget for earth science and has started an inquiry into some 50 National Science Foundation grants. On Oct. 13, the committee subpoenaed scientists at the National Oceanic and Atmospheric Administration, seeking more than six years of internal deliberations, including “all documents and communications” related to the agency’s measurement of climate change.
Any cuts could directly affect the work of Dr. Smith and his team, who are supported by a three-year, $778,000 grant from NASA, which must cover everything, including researchers’ salaries, flights, food, computers, scientific instruments and camping, safety and extreme cold-weather gear. Every scientist, Dr. Smith said, is keenly aware that the research costs “a tremendous amount of taxpayer money.”
Getting Ready
In July, Dr. Smith’s team arrived in Kangerlussuaq, Greenland, a dusty outpost of 512 people on the island’s southwest coast, which serves as a base for researchers to prepare for fieldwork on the ice sheet.
The scientists were excited but anxious as they prepared to travel inland by helicopter to do the fieldwork at the heart of their research: For 72 hours, every hour on the hour, they would stand watch by a supraglacial watershed, taking measurements — velocity, volume, temperature and depth — from the icy bank of the rushing river.
“No one has ever collected a data set like this,” Asa Rennermalm, a professor of geography at the Rutgers University Climate Institute who was running the project with Dr. Smith, told the team over a lunch of musk ox burgers at the Kangerlussuaq airport cafeteria.
Taking each measurement was so difficult and dangerous that it would require two scientists at a time, she said. They would have to plan a sleep schedule to ensure that a group was always awake to do the job. Everyone knew the team would be working just upriver from the moulin — the sinkhole that would sweep anyone who fell into it deep into the ice sheet.
The morning before their departure, the team gathered in a hangar to pack gear and provisions: tents, collapsible metal cots, generators, pickaxes, crampons, freeze-dried meals, a wealth of scientific instruments, vials for snow, ice and water samples, and a cooler to bring those samples back to labs in the United States.
They also took toilet paper and several plastic bottles, each labeled in marker with a large letter “P.” The bottles were for the scientists to urinate in should they not want to go outside in below-freezing nighttime temperatures to the open-air “toilet” on the ice. Afterward they would serve a practical purpose, as hot water bottles tucked into sleeping bags.
Not least, they packed a pair of 10-pound aerial drones, to map the icy watersheds.
On the Ice
The team soon got to work. A helicopter pilot flew two of Mr. Overstreet’s colleagues, Mr. Pitcher and Matthew Cooper, both of the University of California, Los Angeles, across the 60-foot river. On the opposite bank they drilled into the ice, attached an anchor and harnessed themselves to it for safety. They attached a nylon line to the anchor, with the rest of the line coiled in a heavy bag.
Now came the crucial part: The men took turns hurling the bag across the river, but it repeatedly fell into the water. After an anxious half-hour, Mr. Cooper finally got the rope across. Mr. Overstreet caught it and began setting up the rope-and-pulley system he had been testing for so long.
Farther upstream, Dr. Smith cast what looked like three small, round life preservers into the river. At $3,000 each, they were equipped with waterproof computers, GPS and sonar depth technology, all to beam back information about the river’s elevation, speed, depth and more. But the drifters were on kamikaze missions. After sending back the measurements, they would be swept into the moulin.
“That’s 3,000 taxpayer dollars, going down the hole,” Dr. Smith said.
On the edge of the camp, Johnny Ryan, a doctoral candidate in geography at Aberystwyth University in Wales, launched an airplane-shaped drone from a slingshot-like device, then guided it over a nearly 75-square-mile area. But then the drone went silent. “It stopped talking to me, and now it’s crashed in the wilderness,” Mr. Ryan said.
Mr. Ryan, who wore a hot-pink knit cap and purple sunglasses that set off his bright red beard, launched his backup drone. Feeling stressed, he monitored its flight nervously as the hours rolled by, drinking cups of tea to keep warm.
At the riverbank, Mr. Overstreet and Mr. Pitcher started the data collection by clipping a computer device that looked like a boogie board to the line running across the river. Every hour they sent it back and forth to measure the water’s depth, velocity and temperature.
Source: New York Times
Read More Related Content On This Topic - Click Here
Media
Taxonomy
- Climate Change
- Envirionmental Data Management
- Environment Evaluation