Nanotubes for Improved Water Filtration Systems
Published on by Water Network Research, Official research team of The Water Network in Technology
A new study published in Nature Nanotechnology proposes a novel nanotechnology-based strategy to improve water filtration
Together, unsafe drinking water and the inadequate supply of water for hygiene purposes contribute to almost 90% of all deaths from diarrheal diseases -- and effective water sanitation interventions are still challenging scientists and engineers.
A new study published in Nature Nanotechnology proposes a novel nanotechnology-based strategy to improve water filtration. The research project involves the minute vibrations of carbon nanotubes called "phonons," which greatly enhance the diffusion of water through sanitation filters. The project was the joint effort of a Tsinghua University-Tel Aviv University research team and was led by Prof. Quanshui Zheng of the Tsinghua Center for Nano and Micro Mechanics and Prof. Michael Urbakh of the TAU School of Chemistry, both of the TAU-Tsinghua XIN Center, in collaboration with Prof. Francois Grey of the University of Geneva.
Shake, rattle, and roll
"We've discovered that very small vibrations help materials, whether wet or dry, slide more smoothly past each other," said Prof. Urbakh. "Through phonon oscillations -- vibrations of water-carrying nanotubes -- water transport can be enhanced, and sanitation and desalination improved. Water filtration systems require a lot of energy due to friction at the nano-level. With these oscillations, however, we witnessed three times the efficiency of water transport, and, of course, a great deal of energy saved."
The research team managed to demonstrate how, under the right conditions, such vibrations produce a 300% improvement in the rate of water diffusion by using computers to simulate the flow of water molecules flowing through nanotubes. The results have important implications for desalination processes and energy conservation, e.g. improving the energy efficiency for desalination using reverse osmosis membranes with pores at the nanoscale level, or energy conservation, e.g. membranes with boron nitride nanotubes.
Crowdsourcing the solution
The project, initiated by IBM's World Community Grid, was an experiment in crowdsourced computing -- carried out by over 150,000 volunteers who contributed their own computing power to the research.
Source: AZONano
Read More Related Content On This Topic - Click Here
Media
Taxonomy
- Filtration
- Technology
- Research