New Carbon Nanotube Immobilized Membrane

Published on by in Technology

New Carbon Nanotube Immobilized Membrane

Somenath Mitra, distinguished professor of chemistry and environmental science, was awarded a patent for a next-generation water desalination and purification technology that uses uniquely absorbent carbon nanotubes to remove salt and pollutants from brackish water and industrial effluent for reuse by businesses and households

Mitra's new carbon nanotube immobilized membrane (CNIM) is an energy-efficient device designed to filter higher concentrations of salt than is currently feasible through reverse osmosis, one of the standard industry processes. It is also used to remove pollutants such as volatile organic compounds (VOCs) - chemicals routinely used in solvents - from water.

"There is a huge and growing demand for potable water coming from developing nations that are modernizing their infrastructure to improve living conditions. At the same time, droughts caused by climate change are reducing supply in many regions of the world, including parts of the U.S.," Mitra said. "Our hope is to expand the supply of water in places that really need it, while also reducing costs for industry."

Mitra's distillation process runs on energy-efficient fuels such as waste heat, an industrial by-product, and solar energy.

Membrane distillation is a water desalination process in which heated salt water passes through a tube-like membrane, called a hollow fiber, which allows only pure water vapor to permeate its walls. Potable water emerges from the net flux of water vapor which moves from the warm to the cool side of the membrane where it condenses. Certain industries such as semiconductor manufacturing and pharmaceutical processing also require ultra-pure water for their operations.

Mitra, who has conducted research on carbon nanotubes for the past 15 years, created a novel architecture for the membrane distillation process by immobilizing carbon nanotubes, which are an atom thick and about 10,000 times smaller than a human hair in diameter, in the membrane pores. Ken Gethard, a former doctoral student who helped him develop it, is the co-inventor on the patent.

Source: NJIT

Media

Taxonomy