New Nano-sized Synthetic Scaffolding Technique
Published on by Water Network Research, Official research team of The Water Network in Technology
Scientists Have Tapped Oil & Water to Create Scaffolds of Self-assembling, Synthetic Proteins Called Peptoid Nanosheets
The accomplishment -- detailed this week in a paper placed online ahead of print by the Proceedings of the National Academy of Sciences -- is expected to fuel an alternative design of the two-dimensional peptoid nanosheets that can be used in a broad range of applications. Among them could be improved chemical sensors and separators, and safer, more effective drug-delivery vehicles.
Study co-author Ronald Zuckermann of the Molecular Foundry at Lawrence Berkeley National Laboratory (LBNL) first developed these ultra-thin nanosheets in 2010 using an air-and-water combination.
Lead authors on the project were Ellen J. Robertson, a doctoral student in Richmond's lab at the time of the research, and Gloria K. Oliver, a postdoctoral researcher at LBNL. Robertson is now a postdoctoral researcher at LBNL.
Work in Richmond's lab helped to identify the mechanism behind the formation of the nanosheets at an oil-water interface.
uckermann and Richmond are the corresponding authors on the paper. Additional co-authors are Menglu Qian and Caroline Proulx, both of LBNL.
Like natural proteins, synthetic proteins fold and conform into structures that allow them to do specific functions. In his earlier work, Zuckermann's team at LBNL's Molecular Foundry discovered a technique to synthesize peptoids into sheets that were just a few nanometers thick but up to 100 micrometers in length. These were among the largest and thinnest free-floating organic crystals ever made, with an area-to-thickness equivalent of a plastic sheet covering a football field.
Read More Related Content On This Topic - Click Here
Media
Taxonomy
- Research
- Nano Materials
- Energy