Simulations point to graphene oxide frameworks potential in water purification
Published on by Water Network Research, Official research team of The Water Network in Technology
Computational modeling has given materials researchers new insight into the properties of a membrane that purifies saltwater into potable water. The resulting technology could help speed up inefficient desalination processes in use today.
Researchers at Oak Ridge National Laboratory and Rensselaer Polytechnic Institute used supercomputer simulations at RPI's Center for Computational Innovations to explore the purification potential of a hybrid material called graphene oxide frameworks, or GOFs, first introduced in 2010.
"This is basically sheets of oxidized graphene connected by specific chemical linkers from some of the oxidation sites," said ORNL's Bobby Sumpter. "Because it's composed mainly of strongly bonded carbon, it doesn't decompose inwaterand has good mechanical properties. It's an exciting material with potential for numerous applications."
Initially intrigued by GOFs' tunable electronic properties, Sumpter and RPI's Vincent Meunier soon realized the material could be used as a desalination membrane.
Reverse osmosis systems, which make up approximately 40 percent of the world's desalination capacity, generate fresh water by applying pressure to force saltwater through a semi-permeable membrane.
"One big problem for desalination is speed—how much water can you push through per day," said Meunier, the Gail and Jeffrey L. Kodosky '70 Constellation Professor of Physics, Information Technology, and Entrepreneurship at RPI. "You can have a great membrane material but if you can treat only a cup of water a day, that's not going to be useful or cost-effective."
After developing computational models to describe the interactions among the material's atoms, Sumpter, Meunier and RPI's Adrien Nicolaï set out to compute the ideal configuration for a GOF desalination membrane. They used high-performance computers to simulate how layer thickness, the density of the linking pillars, and applied pressure affect the material's performance.
"There's a sweet spot for the density of the linkers," Meunier said. "If you have a high density of linkers, it'll be super selective, but it will also slow it down. You need both selectivity and permeability."
The simulations revealed that fine-tuning the GOF structure results in the ability to remove all the ions from saltwater at a much quicker rate—approximately 100 times faster than the materials currently used as reverse osmosis membranes. The use of water-repellent graphene as part of the porous membrane contributes to the increased performance.
Read details here
Media
Taxonomy
- Purification
- Membranes