Stanford Scientists Develop Water Splitter

Published on by in Technology

Stanford Scientists Develop Water Splitter

Nanotechnology Engineering Produces a Water Splitter that Runs on an Ordinary AAA battery

Now scientists at Stanford University have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis. The battery sends an electric current through two electrodes that split liquid water into hydrogen and oxygen gas. Unlike other water splitters that use precious-metal catalysts, the electrodes in the Stanford device are made of inexpensive and abundant nickel and iron.

In addition to producing hydrogen, the novel water splitter could be used to make chlorine gas and sodium hydroxide, an important industrial chemical, according to Dai. He and his colleagues describe the new device in astudypublished in the Aug. 22 issue of the journal Nature Communications .

The promise of hydrogen

Automakers have long considered the hydrogen fuel cell a promising alternative to the gasoline engine. Fuel cell technology is essentially water splitting in reverse. A fuel cell combines stored hydrogen gas with oxygen from the air to produce electricity, which powers the car. The only byproduct is water - unlike gasoline combustion, which emits carbon dioxide, a greenhouse gas.

Saving energy and money

The discovery was made by Stanford graduate student Ming Gong, co-lead author of the study. "Ming discovered a nickel-metal/nickel-oxide structure that turns out to be more active than pure nickel metal or pure nickel oxide alone," Dai said. "This novel structure favors hydrogen electrocatalysis, but we still don't fully understand the science behind it."

The nickel/nickel-oxide catalyst significantly lowers the voltage required to split water, which could eventually save hydrogen producers billions of dollars in electricity costs, according to Gong. His next goal is to improve the durability of the device.

Source: Stanford News

Read More Related Content On This Topic - Click Here

Media

Taxonomy