Warmer Oceans to Cause Shift of Marine Habitat
Published on by Water Network Research, Official research team of The Water Network in Academic
University of Washington's researchers have reported, warming temperatures and decreasing levels of dissolved oxygen will act together to create metabolic stress for marine animals
Modern mountain climbers typically carry tanks of oxygen to help them reach the summit. It's the combination of physical exertion and lack of oxygen at high altitudes that creates one of the biggest challenges for mountaineers.
University of Washington researchers and collaborators have found that the same principle will apply to marine species under global warming. The warmer water temperatures will speed up the animals' metabolic need for oxygen, as also happens during exercise, but the warmer water will hold less of the oxygen needed to fuel their bodies, similar to what happens at high altitudes.
Great white sharks require plenty of oxygen as metabolic fuel, and even more in warmer waters. They are among marine animals whose distributions will likely shift to meet their oxygen needs under climate change. Terry Goss / Wikimedia
The study, published June 5 in Science, finds that these changes will act together to push marine animals away from the equator. About two thirds of the respiratory stress due to climate change is caused by warmer temperatures, while the rest is because warmer water holds less dissolved gases.
"If your metabolism goes up, you need more food and you need more oxygen," said lead author Curtis Deutsch, a UW associate professor of oceanography. "This means that aquatic animals could become oxygen-starved in the warmer future, even if oxygen doesn't change. We know that oxygen levels in the ocean are going down now and will decrease more with climate warming."
The study centered on four Atlantic Ocean species whose temperature and oxygen requirements are well known from lab tests: Atlantic cod that live in the open ocean; Atlantic rock crab that live in coastal waters; sharp snout seabream that live in the subtropical Atlantic and Mediterranean; and common eelpout, a bottom-dwelling fish that lives in shallow waters in high northern latitudes.
Deutsch used climate models to see how the projected temperature and oxygen levels by 2100 due to climate change would affect these four species' ability to meet their future energy needs. If current emissions continue, the near-surface ocean is projected to warm by several degrees Celsius by the end of this century. Seawater at that temperature would hold 5-10 percent less oxygen than it does now.
Results show future rock crab habitat would be restricted to shallower water, hugging the more oxygenated surface. For all four species, the equator-ward part of the range would become uninhabitable because peak oxygen demand would become greater than the supply. Viable habitats would shift away from the equator, displacing from 14 percent to 26 percent of the current ranges.
Source: Washington.edu
Read More Related Content On This Topic -Click Here
Media
Taxonomy
- Research
- Ecosystem Management
- Habitat