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Abstract
Despite theworldwide presence of pharmaceuticals in the aquatic environment, a comprehensive
picture of their aquatic risk (AR) at the global scale has not yet been produced.Here, we present a
procedure to estimate ARs of human pharmaceuticals at a freshwater ecoregion level. First, we
predicted country- and year-specific per capita consumptionwith a regressionmodel. Second, we
calculated spatially explicit freshwater concentrations via a combination ofmass balancemodels,
addressing the pharmaceutical’s fate in respectively humans, wastewater treatment plants and the
environment. Finally, we divided the freshwater concentrations at the level of individual freshwater
ecoregionswith the regulatory limit value derived from toxicity tests to come to an ecoregion-specific
AR.We applied our procedure tomodel time-trends (1995–2015) of ARs of carbamazepine and
ciprofloxacin, twowidely detected and regulatory relevant human use pharmaceuticals. Our analysis
of carbamazepine and ciprofloxacin showed that ARs, due to exposure to these human pharmaceu-
ticals, typically increased 10–20 fold over the last 20 years. Risks due to carbamazepine exposure were
still typically low for the time period assessed (AR<0.1), although somemore densely populated
and/or arid ecoregions showed higher ARs (up to 1.1). Risks for ciprofloxacinwere found to bemuch
higherwithARs larger than 1 for 223 out of 449 freshwater ecoregions in 2015. Comparisonwith
measured concentrations in ten river basins showed that carbamazepine concentrationswere
predictedwell. Concentrations of ciprofloxacin,measured in four river basins, were, however,
generally underestimated by ourmodel with one to two orders ofmagnitude.We conclude that our
procedure provides a good starting point to evaluate ARs of awide range of humanpharmaceuticals at
the global scale.

Introduction

Active pharmaceutical ingredients (APIs) are con-
sumed in large quantities (e.g. Van Boeckel et al 2014)
that are not completely removed during their passage
through the human body and wastewater treatment
plants (WWTPs). Consequently, their residues can be
transported into the environment, and many APIs
have been detected in surface waters globally (Hughes
et al 2013, Guang et al 2014, aus der Beek et al 2016).
Adverse effects on aquatic species have been observed

at environmentally relevant concentrations for a wide
range of (pharmaceutical classes of) APIs, an extensive
overview of which is provided by Brausch et al (2012).
In addition, recent studies have shown that chronic
exposure to carbamazepine, an anti-epileptic drug,
leads to altered feeding behaviour and reduced egg
viability in zebrafish (da Silva Santos et al 2018), and
lowers the reproductive output in crustaceans (Oropesa
et al 2016). Antibiotics are a specific group of APIs of
potential ecological concern since all major nutrient
cycles in the environment depend on the activity of
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bacterial communities. Additionally, antibiotics entering
WWTPs can affect bacterial communities used for
biological degradation and consequently decrease their
efficiency to remove other pollutants from thewater (e.g.
Schmidt et al2012).

The aquatic risk (AR) of pharmaceuticals has been
acknowledged as an emerging environmental problem
requiring regulatory and scientific attention (Küster
and Adler 2014). Because of technological and prac-
tical limitations, monitoring cannot provide a com-
plete overview of the global situation. Therefore, fate
models have been applied to estimate concentrations
of APIs in several river basins in Europe (e.g. Schowa-
nek and Webb 2002, Rowney et al 2009, Alder et al
2010, Hut et al 2013, Johnson et al 2013a, 2013b,
Boxall et al 2014), North America (e.g. Anderson et al
2004, Schwab et al 2005), South America (Archundia
et al 2018), Asia (Hao et al 2015, Wannaz et al 2018),
andAustralia (Green et al 2013). These approaches are,
however, generally limited in their spatial coverage,
and despite the worldwide presence of APIs in the
aquatic environment a comprehensive picture of ARs
at the global scale has yet to be produced.

Here, we present modelled time-trends (1995–2015)
of ARs of two APIs, i.e. carbamazepine and cipro-
floxacin, in 449 aquatic ecoregionsworldwide (Abell et al
2008). We chose to model carbamazepine and cipro-
floxacin, a second-generation broad-spectrum anti-
biotic, because they are widely detected in surface waters
(Hughes et al 2013, aus der Beek et al 2016), and because
theywere both identified as candidates for theWatch List
of the European Water Framework Directive (Carvalho
et al 2015). Ourmodel predicts API emissions and aqua-
tic concentrations at a 0.5° by 0.5° grid-cell resolution,
andARs are derived using publicly available predicted no
effect concentrations (PNEC).

Methods

Consumption
Global and temporal coverage of API consumption was
achieved through development of linear mixed effects
models (LMMs) that incorporate socio-economic and
demographic predictors expected to influence pharma-
ceutical consumption (Kookana et al 2014). Our LMMs
extend current approaches that extrapolate between
countries and years based on population dynamics alone
(e.g. Johnson et al 2013b, Oldenkamp et al 2013b), or
based on treatment patterns and disease prevalence
(Ortiz deGarcía et al2013).

They were built for each API using a database con-
taining 227 and 567 data points for carbamazepine
and ciprofloxacin, respectively, each representing per
capita total consumption for a unique combination
of country and year, spanning from 1995 to 2015.
Data were collected from open literature and
online databases. Additionally, data on ciprofloxacin

consumption were received from The European Sur-
veillance System—TESSy, released by (European Cen-
tre for Disease Control (ECDC). The final database
contained data on carbamazepine consumption in 69
countries covering all continents (32 in Europe, 19 in
Asia, 8 in South-America, 4 in Central-/North-Amer-
ica, 4 in Africa, and 2 in Oceania), and data on cipro-
floxacin consumption in 49 countries covering all
continents except for Africa (32 in Europe, 5 in Asia, 7
in South-America, 4 in Central-/North-America, and
1 in Oceania). The supporting information provides a
description of the data collection procedure including
a list of countries and the years with consumption data
available (section SI1).

Based on their supposed correlation with API
consumption, predictors selected were the Human
Development Index (United Nations Development
Programme 2016), the ageing of the population (The
World Bank 2016), and the time since first marketing
of API of interest. The models were constructed using
the ‘lme’ function of the package ‘nlme’ (Pinheiro et al
2016) in the R environment (R Development Core
Team 2017). They were based on the log-transformed
per capita consumption of carbamazepine and cipro-
floxacin, incorporating fixed effects from all pre-
dictors including their quadratic terms. Random
effects were included per country on the regression’s
intercept and on the slope over the years. Inclusion of
these random effects was justified based on the
decrease in Akaike Information Criterion score (AIC)
compared to the full fixed-effects model. We
employed the function ‘dredge’ of the package
‘MuMIn’ in the R environment (Barton 2015) to select
the most parsimonious models based on their AIC
score. Independence of predictors was checked and
Variance Inflation Factors were all below 2, well below
the threshold of 5 for unacceptable multi-collinearity
as proposed by Zuur et al (2009). The model structure
of thefinal LMMs is given by equation (1):
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In which M is the per capita consumption of the
API of interest (mg/cap/yr), HDI is the Human
Development Index (-), AGE is the ageing of the popu-
lation (%of population�65 years), YR_M is the time
since first marketing of API of interest (years), and
(1+YR_M|Country) reflects the random effect
structure on the regression’s intercept and slope over
YR_M per country. Coefficients of predictors are
represented by β, with subscripts 0 for the intercept, 1
for linear terms, and 2 for quadratic terms. Error term
ε represents the residual variance not explained by the
model.
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Model performance was assessed via their mar-
ginal and conditional pseudo-R2 values, calculated
according to Nakagawa and Schielzeth (2013) and
Johnson (2014). Moreover, the predictive capacity
Q2 of the fixed-effects part of the models was com-
puted via a leave-one-cluster-out cross validation
(Fang 2011). While the Q2 was smaller than the mar-
ginal pseudo-R2 values for both models (0.34 and 0.29
versus 0.27 and 0.15 for carbamazepine and cipro-
floxacin, respectively), we considered this decrease
sufficiently small to rule out unacceptable overfitting
for bothmodels. Table 1 contains the characteristics of
the models, including their regression coefficients.
Moreover, the supporting information contains par-
tial dependence plots per combination of predictor
and API, to aid in model interpretation (figure SI1.1 is
available online at stacks.iop.org/ERL/14/034003/
mmedia).

In our model calculations for API consumption,
each unique combination of country and year was pre-
ferably assigned a consumption value extracted from
our database. If this was not possible, we applied the
conditional models to estimate the consumption, pro-
vided that our database contained data for the country
of interest in at least one other year. For countries not
included in the database, we predicted consumption
using thefixed-effects part of themodels only.

Aquatic concentrations
The hydrological model PCRGLOBWB (PCRaster
GLOBal Water Balance model) calculates the global
hydrology and water resources at a grid-cell resolution
of 0.5° by 0.5° (Van Beek and Bierkens 2008). Here we
coupled the discharge from PCRGLOBWB with con-
secutive spatially explicit emission modules for con-
sumption, human metabolism, WWTP-treatment,
and environmental fate of APIs to calculate predicted
environmental concentrations (PEC) for the years
1995–2015. Steady-state concentrations in surface
water were estimated per spatial grid cell i in
PCRGLOBWBvia equation (2):
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In which Ei is the emission into cell i (kg d−1; see
equation (3)), Qi is the mean annual discharge in cell
i (m3 d−1), and Vi is the water volume in cell i (m3), to
derive a cell-specific downstream PEC (PECi; g l

−1).
Five loss processes j are accounted for via cell-specific
first order rate constants (kj, i; d

−1), being the three
degradation processes biodegradation, photolysis and
hydrolysis, and the two intermedia processes sedi-
mentation and volatilization. Individual degradation
rate constants were derived from test conditions, and
translated into field conditions by accounting for
temperature differences, sorption to suspended solids
and dissolved organic carbon (e.g. Honti et al 2016)
and reduced light intensity (Schwarzenbach et al
1993). Local sedimentation and volatilization rate
constants were implemented via mass transport velo-
cities betweenmedia, similar to Fantke et al (2017) and
Margni et al (2004). Detailed information on the deri-
vation of all rate constants can be found in the sup-
porting information (section SI2).

Emissions into surface water in cell i (Ei; kg d
−1)

were calculated via equation (3):
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In which the per capita API consumption (Mi; kg/
cap/d) and the local urban population (Purb,i; cap), are
combined to derive the total API consumption in the
urban part of cell i. PCRGLOBWB considers the non-
urban rural population to have on-site treatment (e.g.
local septic tanks), fromwhich no emissions to surface
water take place. After consumption, APIs are partly
absorbed from the intestinal tract and subsequently
metabolized. The remaining fraction of the adminis-
tered dose is eliminated unchanged as parent com-
pound from the body, either egested via faeces ( fpc,f; -)
or excreted via urine ( fpc,u; -). Unchanged API might

Table 1.Characteristics of linearmixed effects regressionmodels for per capita consumption of carbamazepine (CBZ) and
ciprofloxacin (CIP).

CBZ CIP

Coefficient Value (±SE) Value (±SE)

β0 −2.60×101 (±2.57) −1.40×101 (±4.31)
βHDI,1 6.98×101 (±6.73) 4.50×101 (±1.11×101)
βHDI,2 −4.00×101 (±4.20) −2.65×101 (±6.78)
βAGE,1 5.50×10−2 (±1.05×10−2) −2.71×10−1 (±7.15×10−2)
βAGE,2 0 8.60×10−3 (±2.43×10−3)
βYR_M,1 7.95×10−2 (±1.66×10−2) 2.11×10−1 (±1.80×10−2)
βYR_M,2 −1.22×10−3 (±1.73×10−3) −3.87×10−3 (±3.95×10−4)
Performance Value Value

Marginal pseudo-R2 0.34 0.29

Conditional pseudo-R2 0.99 0.95

pseudo-Q2 0.27 0.15
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be transported with wastewater towards a WWTP,
depending on the fraction of the urban population
connected to wastewater treatment ( fconn,i; -). In cells
with a WWTP-connectivity below 100%, the fraction
excreted via urine for the non-connected part was
assumed to be discharged directly into surface water.
The fate of APIs during wastewater treatment was esti-
mated using the multimedia model SimpleTreat 4.0
(Struijs 2014). SimpleTreat 4.0 distinguishes between
WWTPs that apply primary treatment only and those
that combine this with secondary treatment with acti-
vated sludge. In equation (3), this is incorporated with
Boolean parameter ai indicating the presence or
absence of merely primary treatment or primary treat-
ment combinedwith secondary treatment in cell i, and
with the corresponding removal fractions frem,i.

Finally, the chemical inflow into cell i from the
upstream cell (Eup,i; kg d

−1) is calculated as:
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Table SI2.1 contains all parameter values used for
the emission and fate calculations of carbamazepine
and ciprofloxacin.

Comparisonwithmeasured concentrations
Concentration estimations for carbamazepine and
ciprofloxacin were compared with measured concen-
trations included in the global database from the
Umwelt Bundesamt, the German national environ-
mental protection agency (aus der Beek et al 2016).
From this database, all records were extracted report-
ing on the presence of carbamazepine or ciprofloxacin
in fresh surface waters, provided that the sampling
year(s) and sampling location were reported. To
enable a meaningful comparison with model predic-
tions, we allocated individual records to hydrologically
distinct river basins. Records were excluded if they
could not be allocated to a specific river basin based on
their reported sampling locations. The original litera-
ture sources were consulted for those records repre-
senting aggregate average concentrations over
multiple sampling points or over multiple years.
Where possible, concentrations for unique combina-
tions of sampling location and year were extracted
from the original sources. Otherwise, the records were
excluded from the analysis. Finally, river basins were
only included in the validation exercise if measured
concentrations were available for at least five locations
in the river basin, with at least 20%of them above their
limit of detection. For these river basins, box-whisker
plots were constructed with the left-censored data
substituted via non-parametric robust regression on
order statistics (ROS) using the ‘cenboxplot’ function
of the package ‘NADA’ in the R environment
(Lee 2017). These were compared with box-whisker
plots on modelled concentrations for grid cells in the
respective river basins. Cells were excluded for which

zero concentrations were predicted, because they
generally represent upstream areas where measure-
ments are not performed.

Aquatic risks (ARs)
We calculated yearly ARs for carbamazepine and
ciprofloxacin over a period of 21 years (1995–2015),
for 449 freshwater ecoregions (Abell et al 2008).
Ecoregions are distinct geospatial units that represent
unique patterns of environmental and ecological
variables. As such, ecoregions are considered particu-
larly useful for risk assessment and conservation
planning at a larger scale (Schäfer et al 2013, Szöcs et al
2017). The AR for each freshwater ecoregion b (ARb)
was calculated as the average risk-quotient over its
total water volume (equation (5)).

wAR
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In which wiεb is the weight of grid cell i in ecor-
egion b, based on the water volume of the cell. The lar-
ger the water volume, the larger the weight of that cell.
The PNEC is the PNEC which is 500 ng l−1 for carba-
mazepine (Ferrari et al 2004, Moermond and
Smit 2016) and 0.15 ng l−1 for ciprofloxacin (Załęska-
Radziwiłł et al 2014).

As an additionalmeasure of risk, we also calculated
the percentage of the water volume per ecoregion
exceeding the PNEC (equation (6)).
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In which diεb is a Boolean parameter indicating
whether or not the PEC of grid cell i in ecoregion b
exceeds the PNEC.

Results

Consumption
Applying the regression models from 1995–2015,
we found that global carbamazepine consumption
increased from an estimated 742 tonnes in 1995, to an
estimated1214 tonnes in2015 (figure1).Our estimation
of global ciprofloxacin consumption shows a much
larger increase: by 2015, 2318 tonnes of ciprofloxacin
were consumed worldwide, more than seven times the
estimated consumption of 298 tonnes in 1995. It should
be noted, however, that these numbers represent total
tonnages, and are a combined result of increases in per
capita consumption aswell as inpopulation size. Indeed,
the strong increase in total ciprofloxacin consumption
in Asia (figure 1(b)), is less pronouncedwhen consump-
tion is expressed on aper capita basis.

Concentrations
Despite its larger consumption volume and its lower
degradation in the human body (table SI2.1), concen-
trations of ciprofloxacin, aggregated at the ecoregion
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level, were similar to those of carbamazepine (figure 2).
Moreover, aquatic concentrations of carbamazepine
and ciprofloxacin in the typical (median) ecoregion
showed the same temporal trend, increasing at an
average rate of 13% and 16% per year, respectively.
Interestingly, ecoregions have converged over the
years with respect to their carbamazepine concentra-
tions, as indicated by the interquartile range in
figure 2(a). This pattern was not found for ciproflox-
acin, for which the lower bound of the interquartile
range stayed below 10−8 ng l−1 over the whole period
1995–2015 (figure 2(b)).

The Sankey diagrams in figure 3 show the global
mass flows of both APIs in 2015, with the thickness of
respective ribbons reflecting the absolute amounts
(tonnes yr−1). Dark shaded ribbons represent trans-
port flows and light shaded ribbons represent actual
removal and retention. Similar figures for the years
1995–2014 are included in the supporting informa-
tion (section SI.3). Figure 2(B) shows that cipro-
floxacin has a relatively large in-stream removal. This
is the result of its higher removal in surface waters,

mainly due to photolysis (table SI2.1), while sedi-
mentation contributes very little to dissipation of
ciprofloxacin from surface waters (<1%). In fact, no
more than 4% of all ciprofloxacin emitted into fresh
surface waters reaches the sea, compared to 79% of all
carbamazepine. As a consequence, carbamazepine
concentrations vary less throughout the river systems
than do concentrations of ciprofloxacin.

Our modelled carbamazepine concentrations
show good agreement with measurements in nine
river basins throughout Europe and the Mississippi
basin in North America, as is shown by the overlap
between box-whisker plots ofmeasured versusmodel-
led concentrations (figure 4). In contrast with the ten
river basins for carbamazepine, only four river basins
were identified where ciprofloxacin was detected in
more than 20% of the measurements (figure 4). This
comes as no surprise considering that typical detection
limits for ciprofloxacin are in the 1–100 ng l−1 range
(aus der Beek et al 2016). Two of these basins were
located in Asia (Yangtze and Chao Phraya basins), one
in Europe (Ebro basin), and one in North-America

Figure 1.Temporal trends in global consumption of carbamazepine ((a); green) and ciprofloxacin ((b); purple), differentiated between
continents.

Figure 2.Concentrations of carbamazepine ((a); green) and ciprofloxacin ((b); purple) over the period 1995–2015. Dots: individual
ecoregions with concentrations over 10−8 ng l−1; solid lines:median ecoregion; dashed lines: interquartile range over all ecoregions.
Ciprofloxacin concentrations were always lower than 10−8 ng l−1 in 25%of ecoregions.
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(Mississippi basin), and in all four of them predicted
ciprofloxacin concentrations were generally one
to two orders of magnitude lower than the
measurements.

Aquatic risks
In line with the increasing consumption (figure 1) and
concentrations (figure 2), ARs at the ecoregion level
increased over time for both APIs (figure 5). The ARs

of carbamazepine stayed, however, below 1 for all but
one of the 449 ecoregions (figure 5(b)). The ecoregions
with relatively large ARs, i.e. 15 ecoregions with a value
above 0.1, mainly represented densely populated areas
such as western and central Europe, or water-scarce
arid regions such as the Arabian and Californian
peninsulas. Moreover, throughout the 21 year period
the % of water volume exceeding the PNEC in any
ecoregionwas never larger than 50%.

Figure 3.Globalmass flows (tonnes) of carbamazepine ((a); green) and ciprofloxacin ((b); purple) in 2015.Dark shaded ribbons
represent transports flows; light shaded ribbons represent actual removal and retention. The thickness of respective ribbons represents
the absolute amounts (tonnes yr−1).

Figure 4.Box-whisker plots comparingmeasured concentrations (yellow) andmodelled concentrations (green: carbamazepine CBZ;
purple: ciprofloxacin CIP) in several river basins. Boxes represent interquartile range, with black horizontal line themedian
concentration; whiskers representminimumandmaximum. Left-censored data (<LOD)were substituted via non-parametric robust
regression on order statistics (ROS) using the ‘NADA’ package for R (Lee, 2017). Red lines represent the largest LODs reported for that
river basin. River basins were visualized using theHydroSHEDS drainage network (Lehner et al 2008).
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In contrast with carbamazepine, the AR of cipro-
floxacin exceeded 0.1 in 196 ecoregions and 1 in 112
ecoregions in 1995 (figure 5(c)). These numbers fur-
ther increased over time, leading to 282 ecoregions
with an AR higher than 0.1 and 214 ecoregions with an
AR higher than 1 in 2015 (figure 5(d)). In 6 ecoregions,
90% or more of the freshwater volume exceeded the
PNEC for ciprofloxacin. These were small and often
relatively densely populated ecoregions, such as the
coastal region of Israel, the Canary Islands off the Afri-
can coast, and the area aroundRio de Janeiro in Brazil.

Discussion

We showed that it is indeed possible to predict
temporal changes in spatially explicit ARs at the global
scale for human pharmaceuticals. Our modelling is,
however, not without uncertainty. General practice in
chemical risk assessment is to follow the consecutive
steps of use, emission, environmental fate and effect.
Previous research has shown that the first and last of
these steps contribute most to the uncertainty in the
final risk estimation (Oldenkamp et al 2016). Below,
we reflect on the uncertainties encountered during the
emission, effect and fate estimations, respectively.

Onemajor hurdle to overcomewhen performing a
sound global environmental risk assessment of APIs, is
to reliably estimate their country- and year-specific
consumption. Not only are consumption data scarcely
and spatially not homogeneously available, consump-
tion also varies substantially between countries and
years (Van Boeckel et al 2014, aus der Beek et al 2016,
Klein et al 2018). To make optimal use of the available
data, we extrapolated per capita consumption to all
countries globally usingmixed effects regressionmod-
els (table 1). The models describing carbamazepine
and ciprofloxacin consumption were based on a set of
readily available predictor variables (equation (1)).

The regression coefficients in table 1 and the partial
dependence plots in the supporting information
(figure SI1.1), indicate that consumption of both APIs
increases with HDI, although this trend levels off
aboveHDI values of∼0.8. In addition, their consump-
tion follows traditional trends of initial increase and
subsequent decline in the years after introduction. In
accordance with Zhang and Geißen (2010), carbama-
zepine consumption increases with ageing of the
population.

Fixed effect predictors explained 29%–34% of the
variance in per capita consumption, indicating that
extrapolation to countries without any available con-
sumption data is particularly uncertain. Furthermore,
the uneven geographical coverage of consumption
data might have resulted in additional uncertainties in
our estimations for low- and middle-income coun-
tries outside of Europe. Nevertheless, our estimation
of total global consumption of carbamazepine in 2007,
based on the country specific estimates (968 tonnes;
figure 1) is in accordance with actual sales data from
IMS Health for 96% of the global market that year
(942 tonnes; Zhang et al 2008). Moreover, Van
Boeckel et al (2014) and Klein et al (2018) report that
total antibiotic consumption was stable or hadmoder-
ately decreased in high-income countries between
2000 and 2010. Klein et al (2018) further estimated an
increase in the consumption rate of fluoroquinolones,
the subgroup of antibiotics to which ciprofloxacin
belongs, in low- and middle-income countries, while
it decreased in high-income countries. This supports
our estimation of global ciprofloxacin consumption,
which levels off towards 2015 (figure 1). It should be
pointed out, however, that our estimations of cipro-
floxacin consumption in the years after 2010 were lar-
gely based on data originating from European
countries as provided by ECDC.While thismight have
introduced a bias in our estimation of global cipro-
floxacin consumption, similar temporal trends of

Figure 5.Aquatic risks (AR) per ecoregion, expressed as the PEC/PNEC ratios for the total water volume, for carbamazepine (a),
(b) and ciprofloxacin (c), (d) in 1995 and 2015. Inset: counts of ecoregions where specific percentage of thewater volume exceeds the
PNEC.
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levelling-off ciprofloxacin consumption, somewhat
delayed compared to the high-income countries, are
reported for a variety of other countries, such as Iran
(Abdollahiasl et al 2011), Thailand (Apisarnthanarak
and Mundy, 2008), Serbia (Veličković-Radovanović
et al 2010) andVenezuela (Rivas andAlonso, 2011).

While PNECs should reflect the concentration at
which adverse ecological effects do likely not occur
(EMA, 2006), they are generally based on a limited
number of ecotoxicity data derived under laboratory
conditions. To account for uncertainties in the neces-
sary interspecies and lab-to-field extrapolations,
PNECs are derived via application of assessment fac-
tors to the lowest available ecotoxicity endpoint, with
the magnitude of these assessment factors depending
on data quality and quantity. This approach has led to
a very strict PNEC for ciprofloxacin at 0.15 ng l−1,
based on a chronic No Observed Effect Concentration
for the sensitive bioluminescent bacterium Vibrio
fischeri, combined with an assessment factor of 10
(Załęska-Radziwiłł et al 2014). For comparison, the
PNEC for ciprofloxacin when based only on the sensi-
tivity of the standard taxonomic groups of fish, crusta-
ceans, and algae, would be 100 000 times less strict (at
15.6 μg l−1; Załęska-Radziwiłł et al 2011). In fact,
while our calculations indicate almost half of all ecor-
egions worldwide to have an unacceptable AR due to
chronic exposure to ciprofloxacin, the PNEC based on
the three standard taxonomic groups is not exceeded
anywhere.

Finally, the comparison of predicted with mea-
sured concentrations provides confidence that our
model can properly estimate concentrations of carba-
mazepine, but to a lesser extent ciprofloxacin. The
underestimation of measured ciprofloxacin con-
centrations should at least partially be attributed to
analytical limitations and non-representative sam-
pling locations. An additional explanationmay be that
we did not consider four potential emission sources of
ciprofloxacin in our modelling. Non-prescription use
of ciprofloxacin might account for 19%–100% of the
total consumption of antibiotics outside northern
Europe and North America (Morgan et al 2011). Fur-
thermore, veterinary use of ciprofloxacin, while not
approved in either the USA (FDA, 2016) or Europe
(EMA, 2016), can be widespread in other countries.
Indeed, ciprofloxacin has been detected in manure
from livestock (i.e. chicken, cow, and pig) originating
from several Chinese provinces (Hu et al 2008, Zhao
et al 2010). Moreover, ciprofloxacin concentrations
can be substantial in biosolids applied to agricultural
soils (Verlicchi and Zambello 2015). Biosolids can
thus form a significant emission pathway when a con-
siderable part of the excess sludge is disposed of this
way (Oldenkamp et al 2013a). For example, 75% of all
Spanish excess sludge was applied on agricultural soils
in 2012 (Eurostat 2017). However, conservative calcu-
lations we performed with the multimedia box model
SimpleBox 4.0 (Hollander et al 2016), indicated that

transfer of ciprofloxacin from agricultural soils to sur-
face waters was negligible, as ciprofloxacin adsorbs
strongly to soils. Finally, we assumed that APIs emitted
into rural wastewater do not reach surface waters,
resulting in 100% rural retention (figure 3). In reality,
however, leakage of pharmaceuticals into ground
water from septic tanks and pit latrines may not be
negligible (Del Rosario et al 2014, Phillips et al 2015,
Schaider et al 2016, Hanamoto et al 2018), showing
that this could form an additional route into surface
waters that is not yet understood well enough to be
accounted for at a global scale.

Photodegradation is the most important environ-
mental degradation pathway for various APIs (Wang
and Lin 2014), and the extensive in-stream removal as
estimated for ciprofloxacin can be largely contributed
to this process (figure 3). The photodegradation rate
constant for ciprofloxacin (1.41×102 d−1; table
SI2.1) is multiple orders ofmagnitude higher than that
of carbamazepine, explaining the difference in envir-
onmental removal between the twoAPIs.We obtained
this rate constant as the average of 12 experimentally
derived values. Although data were relatively abun-
dant, values ranged from 5.76 d−1 (Belden et al 2007)
to 7.85×102 d−1 (Babic et al 2013). As a con-
sequence, we might have overestimated the actual
environmental photodegradation of ciprofloxacin,
providing another possible explanation for the under-
estimation ofmeasured concentrations.

To further strengthen confidence in the environ-
mental fate calculations, a more extensive validation
covering a wider geographical range should be per-
formed, ideally focusing on densely populated and
arid ecoregions with relatively high environmental
concentrations, as identified in our study.

Conclusions

Time trends of yearly ARs from human pharmaceu-
ticals can be derived with reasonable confidence for all
river basins worldwide, by combining spatially explicit
chemical fate and effect modelling with predictions of
pharmaceutical consumption. To our knowledge, this
is the first time such an exercise has been performed
for specific APIs at a global scale. Our analysis has
shown that ARs due to carbamazepine exposure are
typically low, but that risks due to ciprofloxacin
exposure resulting from human use are expected to be
extensive and widespread. Applying our method to a
wider range of (classes of) APIs will provide further
insight in the general applicability of our approach.
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