Satellite Applications

Earth Observation of Inland and Coastal Water Quality

Sustainable Water Resources Roundtable Florida Gulf Coast University and Babcock Ranch

Cathy Johnson 22 December 2016

Satellite Applications Catapult – part of Harwell Space Cluster

Satellite Applications: Three Waves of Innovation

Remote Sensing for Water Risk

Earth Observation data offers large-scale, timely, and low cost method for monitoring the Earths changing environment in both time and space

How does a satellite see?

Passive System

Reflected and Emitted

Energy Source

Water Quality – Algal Blooms in Lake Erie

Aquatic Optics used to characterise composition of dissolved materials

Water Quality – Water turbidity from Landsat 8

Turbidity

River Thames, London, UK

Historic data can assist in Identifying long-term trends, and help understand emerging problems over large areas

© EOMAP 11

2014 © EOMAP Gentlet & Co KG atellite imagery: Landsat 8 with 30m resolution (C) USGS/NASA 2014

Red Tide – United Arab Emirates - 22 November 2008. Envisat MERIS

© ESA

Y

Strong Chlorophyll response indicating algal bloom.

SeaWiFS, 1999 © NASA

Indian River Lagoon, Florida. Landsat 8, True Colour and False Colour

Landsat-8 © NASA & USGS

Mapping in Colour – Sentinel-2

eesa

The Sentinel-2 mission's frequent revisits over the same area and high spatial resolution allow changes in inland water bodies and the coastal environment to be closely monitored. With its 13 spectral channels, the mission's novel imager can capture water quality parameters such as the surface concentration of chlorophyll, detect harmful algal blooms, and measure turbidity (or water clarity) – giving a clear indication of the health and pollution levels.

Algal bloom from Sentinel-2

Maps of Mangrove Forest **Biomass in Everglades** National Park created using SRTM

25°45'N

25°30'N

25°15'N

© NASA

Maps of Mangrove Forest Height in Everglades National Park created using SRTM

25°45'N

25°30'N

25°15'N

© NASA

Simard, Marc; Keqi Zhang, Victor H. Rivera-Monroy, Michael S. Ross, Pablo S. Ruiz, Edward Castaneda-Moya, Robert R. Twilley, and Ernesto Rodriguez, 2006. "Mapping Height and Biomass of Mangrove Forests in Everglades National Park with SRTM Elevation Data" Photogrammetric Engineering & Remote Sensing. Vol.72, No.3, pp299-311.

81°30'W

Environmental Monitoring – Change Detection

Image Copyright© Satellite Application Catapult Ltd 2014. ©Digital Globe, Inc. All Rights Reserved 2011

> Jellyfish aggregation ~133m in length

New Orleans Sentinel-1A Colour Composite, May 2016 VH-VV-VH

Environmental Change – Urban flooding in New Orleans

Free Sentinel 2 imagery produce tangible environmental outputs

10m resolution imagery **every 12 days** and every 6 days in 2016

7 Spectral bands facilitating detailed imagery analysis

Catchment monitoring and modelling – Digital Elevation Models

Accurate DEMs are vital for river catchment modelling. DEMs can be derived from a variety of remotely sensed data:

- Lidar
- Dual- and Tri-Stereophotogrammetry
- SAR e.g. SRTM

Accuracies from cm to metres depending on resolution of source data

© Agarwal et al (2006)

Integrated data approach

Satellite Applications

A new era for Earth observation

UNPRECEDENTED ACCESS TO SPACE ENGABLING BUSINESS TO PROVIDE

LOW-COST

ON-DEMAND COMMERCIAL SOLUTIONS TO ADDRESS REAL CUSTOMER NEEDS

MINING OPERATIONS MONITORING

INSURANCE MODELING

OIL STORAGE MONITORING

HUMANITARIAN AID

OIL & GAS INFRASTRUCTURE MONITORING

Resilient New Orleans

"Critical infrastructure in New Orleans is more than just levees, bridges, and canals. It is a complex series of interdependent built and natural systems that keep our coastal city safe, productive, and healthy.

Part of a resilient approach to infrastructure is an accurate understanding of the full geographic and functional breadth of these systems and the connection between our built urban environment and the managed landscapes that surround us." **City of New Orleans**

Satellite Applications

Thank you

We work with Innovate UK

Black Tide, Florida, 2002. SeaWiFS

SeaWiFS 2002 © NASA

```
CATAPULT
Satellite Applications
```

Algal Bloom, Lake Erie, Aug 2010

MODIS © NASA & USGS

Algal Bloom, Lake St Clair, July 2015

Landsat-8 © NASA & USGS

Catapults - Force for Innovation & Growth

Catapults – The Network

Remote Sensing of Water

Satellite monitoring reveals increasing pressure on the ecosystem of Lake Victoria, East Africa.

Earth observation is the gathering of information about the Earth's physical, chemical and biological systems

Satellite Applications Black Tide, Florida, 2002. SeaWiFS

We work with Innovate UK

SeaWiFS 2002 © NASA

