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The imperative to make energy and resource consumption more sustainable 
is prompting a critical reconsideration of all human endeavours. Within 
urban water management, the drive to enhance sustainability is grounded 
in the recognition that water services consume a substantial amount of 
energy and that wastewater contains valuable resources, including water, 
heat, organic matter and essential plant nutrients. To make urban water 
systems more sustainable, a paradigm shift is needed. Among the proposed 
strategies, source separation coupled with anaerobic co-digestion  
appears to be an effective means of recovering energy, water and nutrients. 
Here, as existing centralized infrastructure that serves tens to hundreds 
of thousands of people is difficult to alter and the technologies needed 
to realize this strategy are difficult to implement in single-family homes, 
we consider the scale of a city block. Using a quantitative model of unit 
processes that simulate energy, water and nutrient flows, we consider 
the technical and economic feasibility of a representative decentralized 
system, as well as its environmental impacts. To realize potential synergies 
associated with on-site use of the recovered resources, we complement 
the decentralized water system with vertical farming, photovoltaic 
energy generation and rainwater harvesting. Our analysis suggests that 
decentralized water systems can serve as a cornerstone of efforts to enhance 
resource efficiency and improve the resilience of cities.

A recognition that humanity’s energy and resource consumption 
is unsustainable is prompting a critical re-evaluation of all human 
endeavours. In urban water management, the desire to enhance sus-
tainability is driven by the recognition that the provision of water con-
sumes large quantities of energy and that the wastewater produced by 
households, commercial activities and industries contains valuable 
resources. Wastewater represents an underutilized source of water, 
energy and plant-essential nutrients. However, most urban water sys-
tems were designed to treat and dispose of wastewater in a manner 

that minimizes surface water pollution and risks to public health.  
To achieve these goals, energy-intensive treatment processes that  
often dissipate energy and nutrients contained in wastewater are  
used1–4. Recognizing the limitations of traditional wastewater manage-
ment approaches in achieving environmental and economic sustain-
ability goals1,5–7, the urban water cycle must change.

Most prior efforts to recover resources from wastewater have 
focussed on resource recovery at large, namely centralized treatment 
plants. This approach benefitted from economies of scale and was 
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services have been increasing at rates that are faster than those of other 
essential services. These costs are projected to grow as infrastructure 
deterioration continues52–57. Therefore, decentralized systems could 
alleviate some of the burden of increasing flows on these systems.

Research needs
Hybrid centralized–decentralized systems—the practice of integrating 
building or city block-scale water and wastewater management within 
existing centralized water systems—is attractive because it has the 
potential to reduce the costs of resource recovery while simultaneously 
providing a means of exploiting fit-for-purpose water that supports 
broadly shared societal goals related to resilience and can enhance 
water security, food supply chains and water self-sufficiency1,6,58,59. 
These systems also have the potential to be more compatible with 
existing water governance because they provide a means for cities fac-
ing water stress to reduce the quantity of water delivered and treated 
without abandoning existing infrastructure or making large invest-
ments to rapidly transition away from existing approaches15,58,60. The 
term ‘decentralized’ is used throughout the manuscript to highlight 
localized resource recovery. Still, it is important to note that these 
systems would probably function as ‘distributed’ components within 
a larger centralized management network, enabling local benefits and 
broader integration.

Acknowledging the potential advantages of decentralized urban 
water and wastewater systems, this study provides a cost, technical 
and environmental evaluation of decentralized source separation to 
facilitate efficient energy, water and nutrient recovery. The magnitude 
of recovered nutrients is illustrated using the produced fertilizers 
to support local food production while exploring potential payback 
mechanisms through synergistic strategies. A theoretical urban cluster 
of housing blocks was selected for this analysis because the size of the 
developments is consistent with initiatives such as Barcelona’s Super-
illes (Superblocks)61 that have broad appeal in cities seeking actions to 
achieve a shared social commitment to the circular economy and the 
desire to live in a green community.

Results and discussion
Decentralized water systems can bring water, energy and plant- 
essential nutrients directly into the urban landscape. Although the 
prospect of recovering a large fraction of the energy and resources 
flowing through these systems is attractive, adoption of this 
approach in full-scale systems has been limited1. Nevertheless, several 
high-profile proof-of-concept projects have been built recently17–19. 
As first-generation demonstration projects often receive grants and 
subsidies and are often designed in a manner that minimizes risk, cost 
and energy, the data obtained from them may not be readily extrapo-
lated to projects that would be built as the concept is implemented in 
multiple locations within a city. To address this limitation, we evalu-
ated a representative block-scale water and wastewater management 
system that employs source separation as part of a larger effort to 
make urban areas more resilient and attractive while supporting a 
circular economy.

A new paradigm of decentralized source separation and reuse
The proposed system considers a city block with approximately 2,000 
people living in eight 12-storey medium-rise apartments (Fig. 1). Each 
building has a total area of 670 m2 available as a rainwater collection 
surface (Supplementary Tables 2.1 and 2.2). Nutrients recovered by the 
wastewater treatment system are supplied to a vertical farming system 
located in semi-automated containers within, adjacent to or on the exte-
rior of the buildings (Supplementary Table 26.1). The buildings share a 
common basement/parking area accommodating the water treatment 
system. The space required for the treatment system occupies 6–8% 
of the basement/parking area, allowing for additional equipment or 
future expansions (Supplementary Table 14.6).

relatively easy to integrate into the institutions responsible for urban 
water management, but it was unable to take advantage of the effi-
ciencies that could be gained through the collection and recovery of 
separate waste streams that were rich in specific resources. Centralized 
resource recovery systems also struggled to take advantage of the 
benefits of fit-for-purpose water treatment because expensive new 
pipe networks were required to distribute non-potable water. The 
convergence of information technology (IT) and modular technol-
ogy advancements holds the potential to enable the safe operation of 
small-scale water treatment and water supply networks that can take 
advantage of source separation and its high resource recovery effi-
ciency together with the reuse of water of different qualities8,9. These 
innovations also have the potential to enable flexible and resilient 
hybrid or ‘off-grid’ small-scale systems, where citizens enjoy access to 
high-quality water in a manner that is less expensive, more sustainable 
and less polluting than existing approaches10–12.

Source separation enhances the efficiency of 
resource recovery
Separation of wastewater into three different components, namely yel-
low water (that is, urine), brown water (that is, faeces and flush water) 
and grey water (that is, everything else), has the potential to reduce the 
costs of recovering water, energy and nutrients relative to the conven-
tional approach of treating the combined wastewater streams11,13–16. 
Slowly but steadily, the number of initiatives taking advantage of this 
approach is increasing17–22. Black water (combined brown and yellow 
water), which constitutes roughly 20% of the volume of household 
wastewater, contains about 90% of the carbon and nitrogen and 80% of 
the phosphorus discharged by households. Treating this resource-rich 
stream separately (for example, by anaerobic digestion) is a proven 
means of recovering energy and water2,13,16,23–27. Anaerobic digestion, 
despite its lower energy conversion efficiency28–30 (<15%) compared 
with incineration31,32, provides a sustainable solution for energy and 
nutrient recovery from black water, offering a substantial improvement 
over the energy-intensive aeration processes owing to low oxygen 
transfer efficiencies33–36 commonly used in conventional wastewater 
treatment. The grey water remaining after the black water is separated 
can be treated with less energy-intensive approaches to a point at which 
it is suitable for reuse within the home (for example, for laundry) or 
irrigation of plants20,37,38.

Digital tools support a beneficial spread of 
distributed water treatment
New advancements in IT, such as Digital Twins, the Internet of Things 
and application programming interfaces, are revolutionizing the con-
trol, monitoring and operation of wastewater and resource recovery 
facilities39–41. While advances in remote monitoring, process model-
ling and real-time control of processes have addressed certain of the 
limitations that previously hindered the operation of decentralized or 
distributed water and wastewater treatment systems42–44, it is impor-
tant to recognize that IT is just one piece of the puzzle. Nonetheless, IT 
advancements represent a powerful toolkit with immense potential that 
can support transformative changes in water and wastewater manage-
ment when coupled with better sensors and actuators, communication 
devices, modular approaches and new ways of thinking.

Similarly, reliance on centralized sewer networks is being 
re-examined owing to costs, maintenance challenges and vulnerability 
to extreme weather events. In centralized urban water systems, over 
90% of the wastewater collection and treatment costs can be attributed 
to the construction and maintenance of sewers45–48. Moreover, the 
existing sanitation infrastructure, particularly sewers, is reaching its 
operational limits as utilities confront the challenges associated with 
ageing infrastructure, population density changes and the increas-
ing frequency of large rain events driven by a changing climate49–51. 
To cover the necessary repairs and replacements, the costs of water 
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Fig. 1 | Proportional representation of the space requirements for 
decentralized wastewater treatment in a typical city block. The internationally 
standardized dimensions of twenty-foot equivalent unit (TEU) containers were 

used to visually compare the space requirements. The decentralized source-
separation modules only require approximately 480 m3 (7%) of a basement 
parking floor. COD, chemical oxygen demand; TBD, target bio-load dependent.
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Wastewater produced within the buildings is separated into black 
and grey water (Figs. 1 and 2). The black water is further separated into 
yellow and brown water with urine-diverting toilets (Supplementary 
Information Section 11). The yellow water (1–2% of the flow) is directed 
towards additional equipment designed to extract nitrogen (N)- and 
phosphorus (P)-based fertilizers, which satisfies about 45% and 7% of 
the N and P demand of the vertical farm, respectively (Supplementary 
Table 26.1). The brown water (10–15% of the flow) is enriched with food 
waste produced within the buildings before being fed into an upflow 
anaerobic sludge blanket (UASB) reactor (Supplementary Table 4.3). 
The UASB is designed and operated for struvite precipitation, which 
recovers about 90% of the P needed by the vertical farm as struvite and 
liquid digestate (Supplementary Table 10.4). It also enables the recov-
ery of more than 50% of the whole treatment system energy require-
ments through biogas (Supplementary Information Section 7.2). The 
effluent of the UASB is further treated to lower the N concentration 
(via deammonification), but the layout could be modified to allow 
further N recovery. A membrane bioreactor treats the low-strength 
grey water (85% of the flow). Four other alternatives, that is, moving bed 
bioreactor, membrane aerated bioreactor (MABR), aerobic granular 
sludge and electro-oxidation, also were considered and proved to 
be potentially more cost effective (Supplementary Table 9.16). We 
selected a membrane bioreactor (MBR) for our analysis owing to its 
well-documented cost, technical data and combined biological treat-
ment and filtration process. The treated grey water complies with 
the guidelines of the United States Environmental Protection Agency  
(US EPA) (EPA/600/R-12/618), World Health Organization (WHO) 
(GDWQ, 2011 and 2006) and the European Union (regulation 2020/741) 

for reuse in urban and bathing applications (Supplementary Table 20.1). 
To further ensure safety and optimize treatment standards, we not only 
adhered to the recommendations of the National Blue Ribbon Commis-
sion’s Health Risk-Based Benchmarks for Onsite Treatment of Water and 
the regulations for on-site treatment and reuse of non-potable water of 
the California State Water Resources Control Board62,63, additionally, we 
incorporated state-of-the-art research and adapted all risk measures 
following similar approaches to ensure alignment with the most cur-
rent and rigorous practices20,64.

Potable water could be partially sourced through the collection 
and treatment of rainwater, employing a multi-stage process consisting 
of pre-treatment, reverse osmosis (RO), ultraviolet (UV) disinfection 
and remineralization to ensure the highest standards of purity and 
reliability even in polluted environments (Supplementary Information 
Section 13.1). In situations where rainwater is insufficient, the system 
can draw from the existing centralized supply or expand the capacity 
of treated grey water to fulfil drinking water needs (similar to a direct 
potable reuse scheme). This decentralized approach offers the poten-
tial to substantially decrease water demand on the central supply by 
up to 90–95%. However, regulatory constraints on potable grey water 
usage must be addressed to fully realize this potential and alleviate the 
burden on existing centralized systems.

Model development and system performance assessment
The model applied in one of the scenarios is illustrated in Fig. 2. Sys-
tem performance was simulated with the modelling software SIMBA# 
(ifak)65, which was augmented using manufacturing specifications and 
available technical data. The model integrates co-digestion, anaerobic 

Co-digestion module

Building nos. 1–5 food waste

Building nos. 5–9 and food court food waste

Food waste from households, commerce
and another organic producing activities

Feedstock characterization
and blending control

Anaerobic digestion module
UASB + struvite recovery

Building nos. 10–12 and food waste

Nitrogen removal module
Oxygen-limited
autotrophic nitrification
and denitrification

Grey water module
MBR

Building nos. 13–15 and food waste

Black water
influent

Grey water
influent

Fe103456 = 300 gpd

Total solids = 12 Kg/m^3

Volatile solids = 0.9 Kg/m^3

23%

9%

72%

Wasting
biosolids

E�luent to
tertiary treatment

E�luent from
black water
treatment to
MBR treatment
+ grey water

Blend of treated brown water e�luent + untreated grey water influent

Biogas
production

Magnesium controller for struvite recovery

Fig. 2 | The source separation-based model in the city block was simulated 
with the modelling software SIMBA#. The Sankey diagram represents the  
TKN mass flow, grams of N per day (green), and the biogas and air flows,  
m3 per day (light blue). The model includes three main types of controllers:  
(1) chemical dosing of magnesium for struvite recovery; (2) aeration controllers 
for oxygen requirements (deammonification and MBR); and (3) co-digestion 
module for the appropriate blending of feedstocks properties (that is, organics 
from households, commerce, restaurants and so on). The depicted buildings 

represent the different organic blends from each group of buildings within the 
urban cluster. nrYW, non-recovered yellow water; FW1, fresh water parameter; 
TWater, temperature water; Tsidestream, temperature sidestream; ZeroiO2, oxygen 
initialization parameter; VFA, volatile fatty acids; BOD, biochemical oxygen 
demand; COD, chemical oxygen demand; TSS, total suspended solids; VSS, 
volatile suspended solids; ASM, activated sludge model; ADM, anaerobic 
digestion model.
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digestion with simultaneous struvite recovery, grey water treatment 
process, chemical dosing, aeration systems for aeration-based pro-
cesses (for example, MBR and biofilm-based biological treatment), 
rainwater harvesting and water purification systems (Supplementary 
Information Section 19). Mass balances and volumetric flows were 
obtained under different scenarios, as exemplified in the Sankey dia-
gram (Fig. 2) of the total Kjeldahl nitrogen (TKN) mass flow as well as the 
biogas and supplied air flows (m3 per day). The source separation-based 
model supports the estimation of monitoring needs, equipment siz-
ing, unit selection, energy requirements, maintenance and overall 
cost analysis.

Simulation results were cross-checked with a specialized software 
package designed for source separation modelling (SampSONS)66 and 
a detailed mass and energy flow analysis67 (Supplementary Information 
Section 21). To obtain realistic cost estimates and ensure the highest 
safety standards, the study includes monitoring requirements (Supple-
mentary Tables 24.1, 24.2, 24.3 and 24.4), associated maintenance and 
costs of all the equipment (Supplementary Table 18.9), and necessary 
flow metres, sensors, pumps, valves, storage units and tank capacities 
(Supplementary Tables 14.5 and 14.6), as well as performance out-
puts, such as efficiency metrics and effluent quality (Supplementary 
Information Section 20.1), together with risk mitigation strategies 
(Supplementary Information Section 25).

To gain insight into the performance of the decentralized sys-
tem, water demand, energy production, nutrient recovery and envi-
ronmental impacts were compared with a conventional centralized 
system (Fig. 3). To represent the conventional centralized system, 
data from two conventional activated sludge models were analysed 
(firstly, a detailed conventional activated sludge system with a modified 
Ludzack–Ettinger (MLE) configuration with primary and secondary 
clarifiers and, secondly, a conventional activated sludge system using 
a MBR in an MLE configuration), along with insights from a compre-
hensive literature review and the corresponding piping network cal-
culations (Supplementary Discussion 23). Employing decentralized 
treatment could reduce the amount of water obtained from the central-
ized water supply network by up to 90–95% (Fig. 3a) under the scenario 
in which no potable water demand was met by rainwater harvesting. 
As indicated in our previously published analysis11, the potential for 
rooftop rainwater harvesting to satisfy a portion of the potable water 
needs of people living in medium-rise buildings depends upon local 
climactic conditions. For example, rainwater harvesting could meet 
about 30–40% of the annual potable water demand of people living 
in a 15-storey building in Miami or Hong Kong, but only 5–10% of the 
water needs of people in the same type of building located in Barcelona 
or Santiago de Chile.

On a per capita basis, energy production in the decentralized 
system would be approximately twice as high as the amount produced 
in a centralized facility (Fig. 3b and Supplementary Discussion 22.13). 
The higher energy yield of the decentralized system is due to the fact 
that organic matter from the black or brown water is sent directly to 
the digestor in the decentralized system, whereas some of the energy 
associated with the organics is mineralized (that is, converted into car-
bon dioxide and water) through the biological treatment process used 
in the centralized system. In addition, the decentralized system could 
benefit from a more efficient co-digestion of food waste, which can 
increase energy production for the considered conservative scenario 
by about 35% in comparison with a value ranging from 18% to 25% in a 
centralized system (Supplementary Discussion 6.5).

Decentralized systems that employ source separation recover 
about twice as much N as centralized systems (Fig. 3c), mainly because 
they can efficiently recover N contained in liquid streams (for exam-
ple, source-separated urine). The proposed decentralized system 
could recover as high as 90% of the N present in wastewater if less 
cost-effective technologies such as air stripping-absorption were 
employed68–70.

P recovery is above 90% in both the centralized and the decen-
tralized approaches (Fig. 3d). However, decentralized systems offer 
advantages over centralized nutrient recovery systems with respect to 
the potential uses of the recovered nutrients for two reasons. First, the 
fertilizer obtained in the anaerobic digestion process (that is, struvite) 
exhibits a higher purity (>85%) than the solids obtained by centralized 
systems (that is, biosolids that contain about 4.6% and 2.3% N and P, 
respectively71,72). Urine-derived fertilizers obtained from yellow water, 
such as P precipitates (that is, Ca3(PO4)2(s)) and stabilized urine liquid 
concentrate, also exhibit higher purity than conventional biosolids73,74. 
Thus, both types of minerals obtained from small-scale systems can 
be used as fertilizers with little additional treatment. Second, the pro-
duction of fertilizers in proximity to their point of use reduces costs 
associated with transportation and integration of the nutrients into a 
larger fertilizer supply chain.

The environmental impact of both approaches was evaluated 
through a life-cycle analysis that considered 15 mid-point indicators 
within different European cities as derived by the ReCiPe method67. 
Global warming potential (GWP) and eutrophication potential (EP) cat-
egories, considered the most used and well-understood environmental 
impact categories in the framework of wastewater management75, 
were examined in detail (Supplementary Discussion 22). GWP was 
reduced mainly owing to the lower net energy usage due to the anaero-
bic digestors (Supplementary Tables 22.13 and 22.14). EP was also 
substantially diminished for the decentralized system because more 
than 80% of the treated water was recycled and the nutrients recovered 
(Supplementary Table 22.15), which reduced the nutrient-containing 
effluent discharged to surface water bodies (Fig. 3f).

Decentralization creates synergies that enhance resource 
circularity
After assessing water, energy and plant-essential nutrient production 
within the decentralized system, we considered synergies that could 
enhance environmental sustainability, reduce costs and promote cir-
cular economy practices. Owing to the interest expressed by many 
decision-makers and members of the public in the water–energy–food 
nexus, we focussed on practices that reinforce the spread of renewable 
energy and contribute to local food production. The potential synergies 
that we identified from the simultaneous adoption of vertical farming, 
local solar photovoltaic energy production and rainwater harvesting 
are strongly supported by many communities and could strengthen 
the case for investing in these more resilient urban water systems.

Vertical farming. The nutrients recovered by the decentralized treat-
ment systems can serve as fertilizers used locally for landscaping pur-
poses (for example, creating a verdant environment in courtyards and 
public spaces around buildings) or the local cultivation of food76–78. 
Although urban landscaping might be the easiest way to reuse the 
nutrients with current practices, using buildings as a means of produc-
ing fresh foods was investigated because it is an idea that captures the 
imagination of the public, can be a vector to promote public awareness 
and has the potential of generating revenue that could offset some of 
the costs of operating distributed treatment system.

The combination of wastewater treatment and hydroponic food 
cultivation has been a subject of considerable interest recently74,79–82. To 
address the potential for using recovered nutrients for the cultivation 
of high-value crops, we considered commercially available modular, 
hydroponic systems (for example, Boxfarm, Freightfarms and Urban-
cropsolutions) capable of growing tomatoes (Solanum lycopersicum), 
lettuce (Lactuca sativa), strawberries (Fragaria ananassa), spinach 
(Spinacia oleracea) and mushrooms (Agaricus bisporus) (Fig. 4). The 
allocation of production area for each crop was determined with an 
optimization model that factors in capital and operational costs, mar-
ketable weight per plant, crop harvest cycle, consumer pricing and per 
capita consumption83–88. The relative quantities of these five crops were 
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eutrophication potential.
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based on yearly average consumption, as reported by the United States 
Department of Agriculture89. The additional costs associated with 
semi-automated modular containers or the external facades that could 
house the vertical farming modules were included in the cost model 
(Supplementary Tables 26.1 and 26.2). Although we did not attempt to 
take them into account, facades of this type can serve aesthetic, health 
and energy efficiency goals90–94.

By efficiently using the recovered plant-essential nutrients, which 
are relatively inexpensive owing to the low cost of obtaining fertilizers 
on the open market95–97, the amount of these selected crops produced 
by the vertical farming operation would exceed the United States 
national average consumption for residents of the housing block89. The 
production would be equivalent to a daily salad per resident containing 
roughly two cups of lettuce, half a cup of spinach, one medium tomato, 
a few mushrooms and, occasionally, a few strawberries (Fig. 4). This 
low-calorie salad (<5% daily adult intake) would contain vitamins, min-
erals and fibre, which are essential for a healthy diet (Supplementary 
Tables 26.4, 26.5 and 26.4). Assuming current market prices, the value 
of the theoretical daily (organic and locally grown) produce would 
offset the vertical farming investment and operational costs (CapEx 
and OpEX) in approximately 10–12 years (Supplementary Table 28.3). 
After the payback period and also considering the revenue generated 
by selling surplus crops (which roughly correspond to the vertical 
farming OpEx), the produce value could represent a potential payback 

mechanism for offsetting the costs associated with the decentralized 
system (Fig. 5 and Supplementary Tables 28.7 and 28.8). Therefore, 
although the inclusion of vertical farming would increase the initial 
investment by roughly 3.1 ± 0.3% (Supplementary Table 18.11), the 
operation and deployment costs could be offset in less than 8–13 years 
if the produce is valued at market prices, and it could support the eco-
nomic feasibility of the decentralized system by providing an indirect 
revenue stream (Supplementary Table 28.8).

The nutrients recovered by the decentralized treatment system 
would not exactly match the amount needed to grow the produce. 
Using the optimal mix of crops, the recovered nutrients could supply 
all the necessary phosphorus, magnesium, potassium and sulfur for 
the vertical farm, as well as 56% nitrogen and 31% calcium. To ensure 
optimal growth, nitrogen, calcium and other trace nutrients must be 
added to the system74 (Supplementary Table 26.1).

Photovoltaic system. The use of decentralized energy resources (that 
is, small-scale power generation located in proximity to consumers) 
is gaining interest as an integral part of the transition towards renew-
able energy sources98–101. This approach has the potential to satisfy 
about 20% of a country’s electricity demand while simultaneously 
enhancing grid reliability and resilience100,101. To evaluate possible 
synergies between the energy demand of the decentralized water 
system and the added capacity provided by decentralized energy 
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resources, we considered a photovoltaic system integrated into the city 
block containing the decentralized water system. Representing diverse 
Köppen–Geiger climates, the cities of Barcelona, Toronto, Santiago 
de Chile, Hong Kong and Miami were selected for analysis. Energy 
consumption within the block was categorized into three categories 
based on demand: (1) the water recycling system (D-SS), (2) the vertical 
farm and (3) household energy consumption.

The installations are anticipated to offset an average of 12 ± 3% 
of the estimated total domestic electricity demand (Supplementary 
Table 28.9). The decentralized system and the vertical farm represent 
approximately 2.0 ± 0.7% and 2.4 ± 0.2% of the total annual energy 
demand of the considered development (Supplementary Table 28.9). 
Consequently, the integrated photovoltaic installation would reduce 
grid energy consumption by approximately 8–11% compared with a 
development lacking these features. This allows for the payback of 
initial investment costs (approximately 4% of a new development cost) 
in 10–18 years, with the exact timeframe influenced by urban location 
(for example, Toronto, Miami and so on) (Supplementary Table 28.3). 
Following this payback period, the ongoing energy cost savings could 
then support offsetting the investment costs of both the vertical farm 
and decentralized approach.

Cost and energy comparison with centralized systems
A detailed cost and energy analysis, which builds upon approaches used 
in previous studies11,12, indicates that the performance of the decentral-
ized system is similar to that of the centralized system (Fig. 5). How-
ever, when factoring in cost offsets from food production, rainwater 
harvesting and energy generation, the decentralized system becomes 
substantially more cost effective, potentially reducing costs by half or 
more compared with the centralized system. Similarly, considering 
energy produced through photovoltaics and food waste digestion, 
the decentralized system demonstrates a substantial decrease in grid 
energy consumption, potentially using half or less than the central-
ized system.

Our analysis of energy consumption (Fig. 5b) indicates that both 
modes of providing water services require approximately 2 kWh m−3. 
To enable a fair comparison of both systems, the centralized system 
incorporated direct/indirect potable reuse, ensuring both systems 
provide the same functionality—delivering drinking-quality water 
without developing new traditional supplies (Supplementary Dis-
cussion 28.8). Considering the cost of potable water, wastewater 
treatment, water reuse and sewer services for centralized treatment 
systems102–105, the overall cost of water from the centralized system 
would be approximately US $2.2 m−3, compared with US $1.8 m−3 for 
the decentralized system before accounting for offsets from food 
production. Much of the energy use for the centralized water system is 
associated with operating conventional wastewater treatment plants 
(60%), and advanced treatment plants are needed to prepare the water 
for potable reuse (Fig. 5a). On the other hand, grey water treatment 
and purification represent the largest energy demand for decentral-
ized systems (50% of total use). Implementing innovative technolo-
gies such as the moving bed bioreactor, MABR or electro-oxidation 
instead of the selected MBR holds considerable potential for energy 
reduction (Supplementary Discussion 9.4). The anaerobic digester’s 
ability to recover energy and heat from brown water and food waste 
gives decentralized systems the potential to offset over 50% of their 
total energy demand (Supplementary Table 7.4). This substantial 

energy recovery advantage differentiates them from centralized sys-
tems (Supplementary Tables 7.1. and 7.2). The decentralized system’s 
appeal further increases when considering energy from photovoltaic 
systems (with potential for free energy after payback), especially in 
locations with high energy costs for water import and distribution. 
While centralized systems could also benefit from photovoltaics, 
the diverse range of potential solutions makes a detailed compari-
son beyond the scope of this urban-focussed paper and a subject for 
future research. For comparison purposes, the gross cost of these two 
systems is examined against the cost of water in the representative 
cities106,107. Our results indicate that both modes of water provision 
have similar costs expressed through volumetric tariff rates relative 
to typical volumetric costs for several United States cities, such as 
Barcelona and Hong Kong. Costs in Lisbon, Santiago de Chile and Rome 
are about 25% lower than our projected costs (Fig. 5a).

This comparison highlights a crucial aspect of water costs and 
prices: much of the water utilities’ actual costs are fixed (mainly asset 
costs, staffing, overhead costs and so on) and, therefore, independent 
of the actual amount of water produced. Most of the utilities charge 
both a fixed cost (for example, ‘service fee’ or ‘connection fee’) and 
a consumption-based variable cost (US $ m−3). Consequently, the 
fixed costs can easily represent up to 75% of the total cost. Further 
differences between the cost of water treatment and supply (Fig. 5a, 
left column) and the final price paid by consumers in different cities 
(Fig. 5a, middle column) can also be attributed to a range of intercon-
nected factors, including the need to recover costs of investments in 
water infrastructure and efforts to encourage water conservation, 
as well as the need to subsidize water users who are unable to pay 
the full costs of service108–110. External elements such as energy cost 
fluctuations and unforeseen events (for example, drought and chemi-
cal contamination) further influence the pricing structure, uniquely 
shaping the variation between actual costs and consumer prices within 
each region and utility111,112. Therefore, water price comparisons are 
inherently complex, but they reveal a crucial aspect: the need to share 
the ‘net loss’ cost of the provided service due to the absence of pay-
back paths. In contrast, decentralized systems hold the potential to 
tap into two payback mechanisms powered by synergistic strategies. 
Decentralized system initial costs are approximately 3.5% of the cost 
of a new building (Supplementary Tables 18.1, 18.2 and 18.4), and the 
initial cost of the photovoltaic infrastructure and the vertical farming 
account for approximately 4% and 3.5% of the total cost, respectively 
(Supplementary 18.11). Nevertheless, as is the case for all solar power 
installations and urban farming initiatives, there is an expectation of 
payback on the initial investment. The proposed concept is not an 
exception; while photovoltaic power has an expected payback period 
of 8–12 years depending on location (Supplementary Table 27.4) and 
vertical farming, the initial investment is expected to be (indirectly) 
covered in 12–15 years (Supplementary Table 28.8), the distributed 
water system stands in an intermediate position because two indirect 
payback mechanisms could deliver a return on investment in about 
10–15 years (Supplementary Table 28.3).

The first payback mechanism involves potential indirect savings 
generated by the availability and sale of locally grown, water-efficient 
and organic produce. The efficient in situ recovery of nutrients holds 
the potential to bypass the competitive disadvantage associated with 
artificial fertilizer prices (Supplementary Discussion 28.5.1) and would 
price the recovered nutrients based on their ability to produce food 

Fig. 5 | High-level comparison of the costs and energy requirements per cubic 
metre of treated water between the source separation system (decentralized) 
and the centralized conventional treatment (centralized). a, Detailed cost 
comparison in $ m−3 between centralized and decentralized source-separation.  
b, Energy demand contributors in kWh m−3 between centralized and 
decentralized source-separation. Advanced monitoring and risk mitigation 
strategies are already incorporated in the cost and energy analysis of the 

decentralized system. Data are presented as mean values ±90% confidence 
intervals, calculated using the s.e.m., to illustrate the range of uncertainty 
associated with each data point, which is derived from variations in model 
parameters, assumptions or input values. AD, anaerobic digestion; MBBR, 
moving bed biofilm reactor; CHP, combined heat and power; SS-CoAD, source 
separation co-anaerobic digestion; RW, rainwater; BW, black water; WWTP, waste 
water treatment plant.
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valued at market prices. While food production might not be among 
the main goals of the first decentralized source separation systems 
(initiatives such as landscaping, urban forestry and community gardens 
might be first considered), the theoretical value of nutrients (as pro-
duced crops) illustrates the potential for nutrient recovery potential 
to enhance the economic viability of these systems.

Results from this study suggest that the proposed concept could 
meet approximately 5–8% of the nutritional daily needs of residents 
through organic produce (that is, lettuce, tomato, spinach, strawberry 
and mushrooms) that will not only support a circular economy, but has 
a market value that if accounted for as money saved by the residents, 
offers a payback for the vertical farming investment in less than 15 years 
and the (indirect) revenue after the vertical farming payback could be 
used towards the pay off of the decentralized system costs. Similarly, 
the proposed photovoltaic system has an estimated payback period 
in the range of 6–15 years, depending on location. This means that the 
energy would be at no cost after the payback period, further decreas-
ing the payback period of the decentralized system (even if 50–60% 
of the decentralized system energy is already being recovered using 
anaerobic digestion).

The decentralized system also taps into another payback mecha-
nism that holds the potential to reduce the payback period to less than 
10–15 years, thus avoiding the costs associated with the expansion of 
the existing potable water supply (Supplementary Discussion 28.8). 
Separating grey water allows for a more efficient treatment with reverse 
osmosis treatment, making it cheaper than treating mixed wastewater 
or even desalted seawater. Therefore, the ability of the decentralized 
system capacity to efficiently provide drinking water enables a direct 
comparison with similar approaches achieving the same functionality. 
A direct comparison with traditional water sources is not feasible owing 
to the diversity of potential sources (that is, reservoirs, groundwater 
and rivers) and the combination of amortized infrastructure and age-
ing needs. However, many urban areas grappling with the effects of 
climate change and rapid urbanization cannot meet their projected 
needs through the expansion of traditional potable water supplies. For 
this reason, the most practical solution will probably involve efforts 
to progressively augment the water supply with potable water reuse. 
Thus, the costs of producing drinking water will include the wastewater 
treatment costs and the required extra processes to achieve clean drink-
ing water (Supplementary Discussion 28.8). When the same function-
ality is considered (that is, providing drinking-quality water without 
developing new forms of traditional supplies), decentralized systems 
can cost about half as much as the centralized treatment approach.

The role of increasing water scarcity is important because expand-
ing existing systems is much more expensive per unit of water than the 
average cost used in these comparisons. This means that presented cost 
analyses probably underestimate the economic value of decentralized 
systems because the increasing costs of expanding the centralized 
system as population growth and climate change add additional stress 
were not considered. Future economic analyses should incorporate the 
avoided cost of expanding centralized infrastructure as a key factor, 
alongside other potential benefits such as improved water security 
and resilience. Nevertheless, the presented approach provides insights 
into decentralized water systems’ true economic value proposition. 
Therefore, while the decentralized system payback is initially esti-
mated at 18–22 years, valuing the avoided cost of expanding existing 
water infrastructure could drastically reduce the payback period. 
Conservative estimates (only comparing the price difference with 
that of direct potable reuse (DPR) strategies) suggest a payback period  
of 10–14 years.

Ancillary benefits of decentralized water systems to green devel-
opments. The concepts proposed in this study not only bring forth 
economic, environmental and technical advantages but also hold the 
potential to captivate the public’s attention through their alignment 

with concepts associated with sustainability and the circular economy. 
While our primary focus has been on demonstrating the cost effec-
tiveness, environmental impacts and energy implications, decentral-
ized treatment systems can be configured in ways that are attuned to 
local conditions and community values. For example, recycled water 
and recovered nutrients could be used for the cultivation of trees 
and gardens, creating a neighbourhood that realizes the reduction in 
land surface temperatures (that is, mitigation of the urban heat island 
effect while maximizing the health benefits of being surrounded by 
vegetation)113–115. This holistic approach to urban planning promotes 
environmental sustainability and prioritizes the community’s men-
tal and physical health, fostering a sense of belonging and cohesion 
among residents116–118. Other neighbourhoods might opt for sending 
recovered water and nutrients to existing operations, such as farms, 
golf courses and industry.

Neighbourhoods that embrace technological advancements 
may command higher property values and rents owing to their 
inherent appeal114. The integration of sustainable practices and 
innovative technologies within the community enhances the overall 
attractiveness and desirability of the neighbourhood. The combi-
nation of resource-efficient infrastructure, abundant greenery and 
forward-thinking technologies creates a unique urban ecosystem that 
resonates with the values of modern urban dwellers and could shape a 
more sustainable and fulfilling urban lifestyle.

Finally, neighbourhoods equipped with decentralized water 
systems, photovoltaics and green spaces may also exhibit enhanced 
resiliency. They may recover more quickly when water or power is 
interrupted by natural hazards and be better prepared for extreme 
heat, droughts or floods.

Barriers and drivers of a paradigm shift
From ‘lock in’ to a green transition
Many innovative decentralized urban water solutions have been around 
for years, but real implementation of these practices at scale remain 
challenging17–19,37,119–122. Over the past two decades, architects, develop-
ers and utilities have shown that it is feasible to construct buildings or 
neighbourhoods that are capable of recovering and recycling a marked 
fraction of the water and nutrients that would otherwise be discharged 
as waste. Although advancements in the technologies employed for 
water treatment and resource recovery have improved to the point 
at which decentralized treatment systems are often more attractive 
than centralized systems20,47,64,123–127, translating demonstration pro-
jects into widespread adoption remains a substantial challenge128–132 
because decisions about whether or not to invest in new approaches 
to infrastructure management usually depend on factors other than 
technological feasibility and economic performance1.

Researchers have identified several key barriers to the diffusion of 
decentralized water system technologies1. Arguably, the most challeng-
ing is the lack of broad institutional support, which is primarily rooted 
in technological inertia reinforced by the institutions responsible for 
urban water management. The near absence of existing buildings with 
dual plumbing and the limited experience of builders and building 
operators with such building-scale water recycling systems combined 
with concerns about public perception of the risks of exposure to 
unsafe water are sometimes offered as reasons for a lack of support. 
Although these issues could be addressed readily, the larger problem 
of technology ‘lock in’ probably explains much of the hesitancy about 
decentralized water systems1,10,38,133. This phenomenon, which has been 
observed in numerous social-technical systems, often occurs when 
an approach that has an early lead in innovation acquires dominance 
in a market that restricts the advancement of other technologies134. 
When the technical approach that receives the initial investments 
involves capital-intensive centralized infrastructure, the lock-in effect 
is often extremely difficult to overcome because sunk investment 
costs are large and institutions (for example, equipment providers, 
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contractors and utilities) that benefit from the status quo resist change. 
Furthermore, an inability to fully account for the societal, economic 
and environmental benefits of alternative approaches often thwarts 
efforts to break the lock-in effect.

Technology lock-in is not restricted to urban water manage-
ment135,136. For example, rooftop solar power took approximately four 
decades to progress from a state in which it was employed mainly in 
projects that sought to demonstrate the feasibility of the technology 
to a state in which it is often a standard feature of new homes, offices 
and retail developments. Some of the delay in implementation of the 
technology was due to the high costs of solar panels during the initial 
phase of its development, but delay in technology diffusion was also 
attributable to the lock-in effect, which was perpetuated by central-
ized utilities concerned about revenue losses if distributed electricity 
generation became popular. Similar to the early days of the adoption 
of rooftop-scale photovoltaic energy production, the lock-in effect 
coupled with incomplete accounting for the social and economic 
benefits may slow the rate of uptake of distributed water solutions.

Aligning with a broader recognition that the existing system of 
centralized water supply and treatment is inconsistent with society’s 
sustainability goals and mirroring the eventual economic advantages of 
rooftop photovoltaics, decentralized water systems offer a compelling 
case for breaking the lock-in effect in urban water management, promis-
ing solutions to water and sanitation challenges while contributing to 
broader goals of resilience, reduction in pollution and economic gain.

There are several mechanisms through which the lock-in effect can 
be overcome. In addition to supporting the creation of iconic projects 
that demonstrate the feasibility of new approaches, government can 
play an important role through subsidies that lower the costs of new 
approaches during their early phase of development, when costs are 
likely to be highest. They also can create ordinances that require the 
use of new technologies and mandate institutional reforms that assure 
smoother financing, permitting and monitoring of new approaches. 
In addition, research and development efforts that document the 
financial and social benefits associated with the use or sale of recov-
ered nutrients, lower water bills, reduced consumption of chemicals, 
lower energy requirements and reduced waste disposal can help build 
political support, public interest and institutional support13,15,38,132. Rec-
ognition that the cost of new approaches tends to drop as experience 
is gained and that institutional challenges decrease as stakeholders 
gain experience is critical to navigating from demonstration projects 
to widespread adoption. Rabaey et al.10 proposed learning from solar 
power’s successful adoption to guide the implementation of distrib-
uted water systems. Similar to solar energy, the first installations could 
start with environmentally motivated early adopters, leading to cost 
reductions through innovation. However, these concepts offer addi-
tional advantages beyond cost competitiveness, such as increased 
resilience, local water independence, waste reduction and sustain-
able water management. Despite these benefits, decentralized water 
approaches could face competition from other drought-resistant 
options such as centralized water reuse and desalination. These cen-
tralized approaches align better with existing water institutions and 
do not require dual plumbing systems but face public opposition due 
to cost, environmental concerns (desalination) and the perception of 
treated wastewater (reuse).

A hybrid transition helps overcome the lock-in effect
Although many of the communities that will ultimately find distrib-
uted water systems more attractive than centralized systems will be in 
low- and middle-income countries where water service is less reliable 
or in rural communities that lack piped water and sewers, the initial 
adoption of this approach is likely to take place in cities in high-income 
countries, where a desire for achieving resource circularity coupled 
with the wealth needed to fund new forms of infrastructure exist. Cen-
tralized water services in these cities could play an important role in 

supporting the decentralized systems, providing access to tap water 
that can augment the supply of distributed systems when needed, as 
well as sewer systems for disposal of excess water and residuals (for 
example, solids and salts). As was the case for rooftop solar power, 
the initial market for distributed water systems will probably be part 
of a hybrid approach, where investments in decentralized solutions 
reduce the need for new centralized water projects and make up for 
the decreasing reliability of imported water supplies or to expand the 
capacity of existing sewage treatment plants. As decentralized pro-
jects are being added to the urban water system, their integration into 
the existing infrastructure must be carefully managed. Initially, these 
systems are likely to emerge within the city centre, associated with 
high-profile developments. For optimal results, centralized system 
operators should partner with developers to strategically place new 
decentralized projects, ensuring that they complement the existing 
infrastructure. This could involve incentivizing these systems on the 
city’s outskirts to reduce strain on long-distance water pumping or 
prioritizing these concepts in densely populated areas where conven-
tional supplies are stressed by increased demand.

In the early phases (for example, <5% of overall water use), the 
impact of decentralized systems on the centralized utility will probably 
be minimal. However, over time, two key concerns arise: (1) changes in 
water movement through the centralized system (affecting demand, 
wastewater characteristics and so on) and (2) potential shifts in revenue 
due to a changing customer base. Fortunately, the gradual pace of 
urban change in most wealthy cities affords institutions ample time to 
plan for these transitions and adapt their business models accordingly7.

A shift to a hybrid urban water system will require support from 
utilities, real estate developers, government officials and members of 
the public. As the needed changes may require institutional reforms 
and may result in higher costs for water services during the initial phase 
of implementation, it will be necessary to describe the broader value 
proposition beyond immediate benefits to users of the water system. 
Hybrid water systems potentially provide benefits to the entire com-
munity by enhancing the resilience and sustainability of water, food 
and energy. The adoption of hybrid water systems will also require 
a vision for system financing, design and operation that convinces 
decision-makers that the transition will take place in a manner that 
is economically efficient, reliable and protective of public health and 
the environment.

The first step in building support for hybrid systems involves the 
creation of a unified narrative that places distributed water systems at 
the centre of a strategy for enhancing food security, economic devel-
opment, health and wellbeing. The appeal of integrating distributed 
water systems lies in their strong alignment with broader societal 
goals of resource circularity and climate change adaptation, as these 
concepts excel in promoting local water treatment and reuse, mini-
mizing waste and reducing strain on centralized systems. While new 
technologies sometimes face public scepticism, achieving legitimacy 
can considerably bolster their adoption137–139. Legitimacy often hinges 
on three factors: (1) a user’s belief that the technology offers personal 
benefits, (2) familiarity with how the technology works and (3) trust in 
the institutions managing it.

Importantly, the degree of public familiarity with water reuse var-
ies globally. In many places, the public is accustomed to using treated 
wastewater or grey water for non-potable applications such as land-
scape irrigation and toilet flushing. In these communities, efforts 
should centre on building legitimacy and trust in technologies such as 
urine source separation and the use of treated wastewater for growing 
fruits and vegetables. Demonstration projects, which are often con-
ducted at the pilot scale, help build familiarity with these applications, 
suggesting that the critical area for emphasis may be trust building.

To cultivate strong trust, transparent management and regulation 
of these projects are essential. Involving trusted independent over-
sight groups, similar to the role of expert panels in the United States, 
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could provide an additional layer of public reassurance and scrutiny. 
This approach underscores the responsible implementation of these 
concepts, demonstrating that public health, safety and environmental 
safeguards are prioritized alongside innovation. Building support and 
legitimizing the practices associated with hybrid urban water systems 
are key prerequisites for the diffusion of this new approach. However, a 
successful transition to a hybrid system also faces barriers associated 
with the system of permitting and monitoring system performance. 
Regulatory aspects often act as barriers to the broader adoption of 
innovative technologies in the water sector owing to concerns about 
the ramifications of failure (for example, public health impacts and inef-
ficient use of public expenditures). Successful transitions require the 
adaptation of institutional arrangements and new regulatory frame-
works131,140–143. Collaborative policies at local and national levels, driven 
by the efforts of utility and government leaders, will be crucial for the 
creation of a supportive regulatory framework. The policy innovations 
needed to facilitate change must be adaptable to unexpected chal-
lenges that may arise as hybrid systems develop and thus will require 
dedicated advocates for change.

High costs could serve as another barrier to the adoption of hybrid 
urban water systems, especially in the early stage of the transition. In 
the initial stage of the transitions, when costs for equipment needed to 
operate distributed treatment system are high and regulatory issues are 
likely to result in delays and added costs (for example, delayed permits, 
requirements for on-site operators and requirements to analyse large 
numbers of samples to validate system performance), well-designed 
subsidies can relieve financial pressure and incentivize adoption144,145. 
Research shows that such government support reduces uncertainty for 
green technology companies, encouraging them to bring solutions to 
market144–146.

While simply offering financial incentives for decentralized system 
adoption is unlikely to guarantee widespread success130,147, targeted 
subsidy approaches can be powerful tools in facilitating acceptance 
and implementation148,149. One valuable example is the green building 
certification process. Certifications such as the Leadership in Energy 
and Environmental Design provide financial support and market rec-
ognition for projects integrating sustainability features, including 
water-efficient technologies. A similar approach could be applied to 
source separation adoption, encouraging developers and homeowners 
to embrace these systems. The Battery Park City project in New York 
demonstrates another effective subsidy strategy120,150. Here, govern-
ment grants aimed at reducing combined sewer overflows defrayed a 
substantial portion of the project’s costs. These concepts often have 
the potential to mitigate similar water management challenges, making 
them viable candidates for targeted government funding. Similarly, one 
of the most crucial and straightforward subsidies lies in the connec-
tion fees of hybrid systems to water and sewer systems. Currently, the 
pricing structures of many utilities are not designed to accommodate 
hybrid approaches. Adjusting these connection fees could meaning-
fully incentivize the adoption. However, it is essential to acknowledge 
that utility revenue models vary widely and developing equitable 
subsidy structures may require location-specific strategies.

While green building certifications represent a powerful tool to 
promote sustainability, they currently do not have an explicit focus 
on decentralized water systems. Incorporating these systems into 
certification criteria would considerably boost their adoption. By 
rewarding water-efficient and innovative water management technolo-
gies, certifications would create a market incentive for developers to 
embrace the concept. The proven willingness of renters and buyers to 
pay a premium for green buildings provides a key advantage, making 
the integration of decentralized systems an attractive value proposi-
tion for developers and building owners.

For example, certifications could award points for systems that 
reduce reliance on potable water for non-potable needs, such as irri-
gation or toilet flushing. After these initial projects are implemented, 

it will be essential to re-evaluate the associated benefits and costs. 
This ongoing assessment, coupled with the expected improvements 
in the cost, performance and reliability of approaches over time (the 
experience curve), will help policymakers and building profession-
als fine-tune subsidies and incentives to achieve the desired societal 
outcomes. Importantly, this evolution is likely to unfold over several 
decades, allowing for gradual adjustments, a long-term perspective on 
the integration of distributed systems and benefits from the learning 
gained from the first, more expensive and riskier projects.

Summary and conclusions
This study presents a techno-economic and environmental assess-
ment of a decentralized water and wastewater management system 
that employs source separation and the recovery of energy, water and 
nutrients in wastewater. It encompasses vertical farming and solar 
photovoltaics—two synergistic approaches that enhance sustainabil-
ity, reduce costs and promote circular economies. The paper delves 
into the strategic interplay within the water–energy–food nexus to 
fortify resilience, diminish reliance on centralized systems and foster 
sustainability.

Key observations from this study are as follows:

• The decentralized source separation-based paradigm maximizes 
resource recovery and enhances resilience and sustainability while 
reducing costs. When the same functionality is considered (that is, 
providing drinking-quality water without developing new forms 
of traditional supplies), the overall treatment cost could be about 
half that of conventional treatment.

• Higher resource recovery efficiencies and the ability to easily 
process food waste in the decentralized approach can lead to the 
recovery of 40–50% more energy compared with existing central-
ized energy recovery approaches. The decentralized system also 
uses 85% less water from the utility. It exhibits an approximately 
50% increase in nitrogen recovery and a 90% increase in phospho-
rus recovery, with less than one-third of the environmental impacts 
(for example, global warming and eutrophication).

• The implementation of the decentralized approach would neces-
sitate an approximate additional investment of 4 ± 0.5% relative 
to the construction of new residential blocks to incorporate the 
required pipes, treatment devices and monitoring equipment. 
Nevertheless, the decentralized source separation system can 
benefit from synergistic strategies (that is, vertical farming, pho-
tovoltaics and potable reuse capabilities) that can lead to pay-
back mechanisms to offset investment costs in periods as short 
as 10–15 years.

• The synergy with a vertical farm could provide residents with the 
equivalent of daily, nutrient-rich salad that, if valued at market 
prices, would offset the vertical farm investment costs within 
10–12 years. Selling the surplus crops could offset the system’s 
operating costs. While the initial investment in vertical farming 
increases slightly (3.2%), it supports the financial sustainability 
of the entire system over the long term.

• Adding a photovoltaic system requires a slight increase in initial 
investment (%). However, after a payback period of 5–10 years 
(depending on location), the ongoing energy cost savings will help 
offset investments in both the vertical farm and the decentralized 
water system.

• The decentralized source separation would take up to 7–9% 
of the basement space for the city block-scale development.  
Coupling the system with vertical farming using automated modu-
lar containers would require an additional 10–15% of basement 
floor space.

• The wastewater produced by decentralized systems conforms 
to current quality regulations. Although in this study the treated 
water is reused within the block for non-drinking applications, 
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it could be an alternative of costly direct or indirect potable 
reuse approaches. The efficiency in treating grey water provides 
a cost-effective method of recycling 85% of the water demand, 
thereby alleviating the burden on traditional water sources.

• The recovered plant-essential nutrients can be used for on-site 
vertical farming, landscaping or other purposes, depending 
upon opportunities and community values. Vertical farming can 
enhance food resilience while offsetting some costs associated 
with water treatment and resource recovery.

• Proactive engagement with stakeholders (regulators, utilities, 
developers and the public) is crucial to addressing potential bar-
riers, building legitimacy for unfamiliar technologies, reforming 
institutions to accommodate hybrid water systems and creating 
targeted incentives, especially during the early phases of adoption.

Methods
Scenario overview
In a preliminary analysis11, we investigated the economic perfor-
mance and environmental impacts of implementing a decentralized 
source-separation approach in seven types of residential and urban 
developments. These developments included single-family homes, 
low-rise dwellings, low/medium-rise, medium-rise, medium/high-rise 
and high-rise buildings (Supplementary Table 2.1). Our cost calcula-
tions and results of a previous analysis of energy use and environmental 
impacts revealed that economies of scale make larger buildings, accom-
modating over 300 people, the most cost-effective options among 
residential developments 11. While this approach intends to reflect the 
potential cost variations that would arise when scaling up the decen-
tralized system to serve larger populations, a full economic analysis of 
scaling impacts remains an area for future research. It is important to 
consider that scaling up centralized systems benefits from economies 
of scale, potentially reducing capital costs per unit. Conversely, decen-
tralized systems might experience less substantial cost reductions 
with scaling, but their operational costs are likely to remain lower than 
those of a centralized system, even in a larger context. Nevertheless, it is 
important to note that the main advantage of decentralized systems lies 
in their potential for resource recovery, which can generate additional 
revenue and offset costs. Further research is needed to determine the 
point at which the cost advantages of each approach intersect, offer-
ing insights into the most economically viable solutions for different 
population sizes and service requirements.

Building upon those initial findings, we focussed on a typical 
city block designed to accommodate 2,000 population equivalents, 
consisting of eight high-rise buildings, each with 12 stories and 250 
population equivalents, following the typical occupancy rate found in 
Europe (that is, 2.3 inhabitants per dwelling) and an average apartment 
floor space of 30 m2 per capita (Fig. 6). We estimated the per storey 
area, including common areas, using equation (1), where As represents 
the area per storey, Ahh is the area per household, γ is a constant (equal 
to 1.15) and Nhh is the number of households in the building (Supple-
mentary Table 2.2). An additional 30 m2 per storey was allocated for 
common spaces.

As = γ × Ahh × Nhh + 30 (1)

The total area available for rainwater collection per building, or 
rainwater catchment surface, was calculated to be 670 m2. These build-
ings were arranged around a central rectangular space and shared a 
common basement with a standard floor height of 3 m for the storage 
of technology, resulting in a total rainwater collection area of 5,360 m2 
(Supplementary Table 2.1).

This study includes the investigation of the potential of decen-
tralized rainwater harvesting and solar energy generation to sup-
port critical urban infrastructure across geographically diverse cities 

(Supplementary Table 3.1). To examine varying climates, we selected 
five cities representing a range of Köppen–Geiger classifications: Miami 
(North America, equatorial), Santiago de Chile (South America, arid), 
Barcelona (Europe, Mediterranean), Hong Kong (Asia, warm with dry 
winters) and Toronto (North America, temperate). We analysed average 
monthly precipitation and solar irradiance data to estimate rainwater 
supply potential and solar energy generation capacity (Supplementary 
Tables 3.2–3.7). While we acknowledge that climate change impacts 
precipitation patterns, this study used historical averages. Future 
studies should consider more recent climate projections to assess 
extreme variability, potential shorter and more intense storms and 
explore rainwater storage.

Model overview
We developed a series of models adopting the source-separation con-
cept to investigate the feasibility of implementing decentralized water 
and wastewater treatment systems (Supplementary Discussions 19 
and 23). The models were built following the recommendations of the 
International Water Association (IWA) Guidelines for Using Activated 
Sludge Models151 using the advanced modelling platform SIMBA# 
(v4.2). All the models were designed with an energy-producing anaer-
obic co-digestion process as the main biological treatment with the 
influent flows derived from a source separation approach (that is, 
organic waste and brown, yellow and grey water) instead of using 
energy-intensive conventional aeration-based treatment (that is, 
activated sludge), which do not follow a source separation approach. 
The developed models for the mainstream process were built on an 
adapted biokinetic model based on the Anaerobic Digestion Model 
1 of the International Water Association29. The adapted models were 
specifically built to allow the consideration of adding additional 
substrates (for example, food waste) to the brown and black water 
streams. The model was modified to consider pH changes by using a 
specific algebraic equation solver.

The corresponding aeration system for the grey water flow 
and the biofilm-based nitrogen removal subsystem is used in the 
inCTRL-adapted activated sludge model (CTRL-ASM) biokinetic model 
developed by the Institut für Automation und Kommunikation152. 
To construct the layout of the aeration system, we included blow-
ers, pipes, fittings, valves and diffusers mechanistic models for each 
actuator. The piping system was modelled using the Darcy–Weisbach 
equation, with the friction factor calculated using the Swamee and Jain 
(1976) equation153. The pressure rise across blowers and pressure drops 
across valves and diffusers were calculated using polynomial functions 
based on airflow rate, which were calibrated using manufacturer data. 
Aeration control was operated as ammonia-based aeration control 
with optimal solid retention time (SRT) control154 and accounted for 
by means of continuous feedback using proportional–integral or 
proportional–integral–derivative (PID) control algorithms. To model 
the behaviour of the automatic valves, a control algorithm was imple-
mented that fixes the valve position of the lane with the highest oxygen 
requirement, thereby allowing the other valve to vary to adjust the 
required airflow.

The subsystem for the nitrogen removal of the effluent gener-
ated by the anaerobic co-digestion mainstream process was modelled 
with an in-house inCTRL-ASM biofilm-based biokinetic model, which 
includes two-step nitrification and the growth of anammox bacteria, 
in addition to hydrolysis, adsorption, fermentation and the growth of 
ordinary heterotrophic organisms, phosphorus accumulating organ-
isms and methylotrophs. The anammox biokinetic submodel was based 
on the model of Koch et al.115. Simulation results were cross-checked 
with an Excel-based model exclusively built for this project. The 
Excel-based model was used to calculate under steady-state conditions 
the size, cost, performance and main technical details of all necessary 
equipment units and correlate, through engineering-based equa-
tions, using data from peer-reviewed literature, manufacturers and 
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specialized software (for example, Capdetworks for cost estimation). 
The simulation results and piping design were further cross-checked 
with complementary software specialized in source separation mod-
elling66,155,156 and software to provide detailed mass and energy flow 
analysis67 (Supplementary Tables 21.1–21.6).

To comprehensively assess a conventional treatment sce-
nario, we employed two centralized models for robust comparison:  
(1) conventional activated sludge (CAS) with MLE configuration: the 
MLE process serves as a cornerstone of biological nutrient removal. 
For both centralized-based models and the decentralized model, we 
ensured an identical influent (though drawn from different streams 
within the overall system), a shared co-digestion approach, identi-
cal aeration setup and control parameters (ammonia-based aera-
tion control, airflow/valve-opening logic, blower settings and so on), 
plus matched environmental conditions. This carefully standardized 
approach enables the most direct comparison for a variety of treat-
ment performance aspects and (2) MBR as CAS: recognizing the inher-
ent advantage of having built already the decentralized model’s MBR 
for grey water treatment, we repurposed this modular unit within a 
second centralized model. For this adaptation, the MBR receives a 
combined brown water, food waste and grey water feed that simulates 
centralized sewage composition. Notably, this repurposed design 
retains the original MBR block, characterization, aeration and control 
strategies, providing a truly apples-to-apples comparison with the 
decentralized system.

In certain instances, unit processes or scenarios were scaled up 
or down to account for factors such as mass transfer limitations, effi-
ciency variations and model constraints while remaining consistent 
with established modelling practices. This was particularly relevant 
for small-volume systems, where scaling was necessary to accurately 

represent key parameters such as mass transfer and residence times. 
The adjustments were noted in figure captions within the supplemen-
tary information.

Decentralized source separation layout overview
We compared five treatment configurations involving the use of tradi-
tional, vacuum and urine-diverting toilets (Supplementary Table 1.1). 
The five treatment configurations had anaerobic co-digestion as a 
main treatment, but some scenarios considered the treatment of black 
water, where no urine diversion (UD) was employed, while other sce-
narios considered a urine-diverting approach, where the black water 
stream was further divided into the yellow and brown streams and 
the source-separated yellow stream was treated independently under 
the corresponding configuration. The latter scenario of adopting 
urine-diverting toilets was selected for this study (city block) owing 
to its highest potential in economic and environmental aspects (Sup-
plementary Table 1.3). The selected model had two main treatment 
trains installed in series for brown and grey water, while urine was 
directed towards additional equipment designed to harvest N-based 
and P-based fertilizers from the flow.

Once treated, the recovered water will be utilized for applications 
typically associated with grey water sources that are not meant for 
drinking purposes (for example, cleaning, gardening and showers), 
even if quality standards for drinking water were met. Potable water 
was supplied either by the conventional and centralized water sup-
ply system or by the collection and treatment of rainwater by RO, UV 
filtration and remineralization (for example, water-drop filter, 2021).

The incorporation of kitchen food waste (KFW) into the brown 
water flow was employed in some scenarios to achieve higher loads of 
organic matter and consequently increased biogas production in the 

Most common residential and urban developments

Inhabitants: 120
8 storeys in height (8)

Inhabitants: 60
5–7 storeys in height (6)

Inhabitants: 12
3–5 storeys in height (4)
Residential apartment building

Medium/high-rise
housing

low/medium-rise
housing

Medium-rise
housing

Roof area: 90 m2
Rain harvesting: 400 m2

Rain harvesting: 270 m2

Rain harvesting: 350 m2

Rain harvesting: 500 m2

The seven most common residential and urban development types were evaluated according to
rain harvesting potential, capacity to recycle grey and black/brown water,
space available for treatment units, environmental impacts
and costs.

PW demand: 95 m3per month

PW demand: 50 m3per month

PW demand: 10 m3per month
Inhabitants: 12
2–4 storeys in height (2)
Townhouse/terrace housing

low-rise
housing

PW demand: 10 m3per monthInhabitants: 2.3
1–2 storeys in height (1)
Single detached dwelling

Single
dwellings

PW demand: 3 m3per month

Inhabitants: 2,000
Case study: 8 buildings (12 storeys in height)

City block or housing block

Rain harvesting (area): 5,500 m2

Potable water
Demand: 1,600 m3per month

Inhabitants: 300
From 9 to 25 storeys in height (15)

High-rise housing

Rain harvesting (area): 650 m2

Potable water
Demand: 240 m3per month

Toronto

Barcelona

Hong Kong

Santiago

Miami

26 l per person 15 l per person Potable water su�iciency through rain harvesting (months 100% satisfied)

Fig. 6 | Characterization of the most common urban developments and 
their corresponding rain harvesting potential. Characterization of the most 
common residential and urban developments according to their number of 
inhabitants (using an average of 2.3 habitants per household), number of stories 
and total potable water demand (estimating 26 l per person per day); available 
roof area that could be used for rain harvesting (90% of available roof area); and 

total space (as volume) of a typical basement or underground floor for each type 
of development. Rainwater collection potential per type of building is depicted 
using coloured bars where each fraction represents a month of the year (from 
January to December) when demand can either be satisfied or not, depending on 
the location and total monthly rainfall. PW, potable water.
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UASB reactor. For these scenarios, a dedicated KFW collection system 
should be in place, involving separate bins, under-sink disposals or 
other collection methods suited to the building or community con-
text. An organic loading rate of 10 g m−3 was targeted for co-digestion 
because it offers the optimum methane conversion rate of around 62% 
(ref. 157). The installed reactor was expected to operate at an organic 
loading rate of 10.4 g m−3, a temperature of 35 °C and a short hydraulic 
retention time of 2.6 days157–163. The described operation allowed the 
reactor to cover 55% of its energy consumption through biogas.

A single-stage oxygen-limited autotrophic nitrification- 
denitrification (OLAND) process was considered for the treatment of 
the UASB reactor effluent to remove nitrogen from the brown water 
stream. The biofilm surface was sized according to the influent nitro-
gen load. Phosphorus as struvite was recovered simultaneously in 
the UASB and obtained by implementing a crystallizer and a decanter 
where supersaturation is achieved through the maintenance of reac-
tor pH at 8 by the addition of Mg(OH)2. Calculations of effluent nutri-
ent concentrations, struvite production, consumption of Mg(OH)2, 
electricity demand and reactor and decanter volume are included in 
Supplementary Information.

After nutrient removal treatment, brown and grey water are mixed, 
and aerobic treatment is performed in a side-stream membrane biore-
actor coupling an aerated biological treatment tank and a cross-flow, 
multi-tube membrane loop. A hydraulic retention time of 16.2 h and 
a reactor volume of 164 m3 were used. Even if the incorporation of an 
MBR in the treatment layout substantially increases operational costs, 
the inclusion of an aerobic stage ensures adequate effluent quality. 
The challenge of meeting phosphorus concentration guidelines for 
wastewater reuse was solved by incorporating a final stage composed 
of a flat sheet RO membrane followed by a UV lamp. This also provides 
additional pathogen removal.

Urine is collected separately and stabilized in an electrochemical 
cell coupled with a crystallizer164–166 without the need for added chemi-
cals. Precipitation of around 30% of the phosphates in the wastewater, 
mainly calcium phosphate, is expected in the cell. The resulting stream 
is directed to an MABR for nitrification. The recovered concentrate 
from the urine treatment train is used in the vertical farm in conjunction 
with the rest of the harvested fertilizers (Supplementary Tables 11.7 
and 11.8).

Urine-holding containers are distributed among the buildings to 
ensure proper collection167. Sludge from the UASB reactor and the MBR, 
as well as RO concentrate, are valorized through use in vertical farm-
ing. Costs of sludge management, including laboratory testing of soil 
and water, transport, application to the field and additional expenses, 
are included in the economic analysis148. KWF is pre-treated before its 
mixing with brown water in an agitated tank (for example, Tanks West 
and Fisher Scientific) by grinding and homogenization161,168,169. The 
preparation of the brown water and KFW mix is operated in batches. 
Holding tanks for source and treated water equalization are installed 
and sized according to available literature170. Adequate flow equaliza-
tion helps optimize sizing and ensure effective treatment, as well as 
homogenize water quality171.

Installation, maintenance and monitoring in new buildings are 
included in the costs (Supplementary Tables 18.6 and 22.9). The 
cost of replacement parts within the installation’s studied lifespan is 
accounted for by considering the life expectancy of system parts172.

Sewer infrastructure
Pipe lengths, types and costs were calculated using the Urban Water 
Infrastructure Model for sewers (Supplementary Tables 15.5 and 15.6). 
Lengths were calculated based on housing density and area, the latter 
of which was adapted to the floor space of each building. Pipes were 
assumed to originate at the centre of every housing ground floor sto-
rey. A model parameter (f2) representing the housing shape factor was 
estimated for each scenario45. Cost scenarios for the decentralized 

treatment systems considered both the possibility of using existing 
pipelines as grey water sewers and the need to retrofit or install new 
infrastructure. Costs of installation for brown, yellow and rainwa-
ter sewers and of connecting the housing block to municipal water 
are included in all cases. High-density polyethylene (HDPE) pipes 
(ø = 70 mm and 32 mm, respectively) were used for brown and yellow 
water. In the scenarios including new grey water sewers, un-reinforced 
concrete pipes of 110 mm in diameter were used. Rainwater is col-
lected with HDPE pipes, and gutter and downpipes are considered to 
be already included in the building design173. Pumping to return water 
to households and to avoid obstructions is included for all flows, with 
pipes operating by gravity where appropriate. Lengths are calculated 
independently for each building in the block with a shape factor (model 
parameter f2) of 1.44 and the corresponding housing density.

Brown and yellow streams considered existing commercially 
available piping concepts that allow the separation of the different 
wastewater streams within the existing infrastructure (Supplementary 
Discussion 15.4). The alternatives can split the drained streams without 
affecting the structural fabric of existing buildings, as new pipelines 
could be installed inside the existing ones following a tube-in-tube 
approach (or replaced with pipelines with such characteristics). A 
tube-in-tube approach or the so-called double inliner system would be 
feasible for retrofitting source separation systems into existing pipes 
without extensive constructive intervention174–177.

Grey water and rainwater pipes were assumed for gravity water 
collection. Black water pipes were assumed to be operated also by 
gravity; nevertheless, preliminary studies evaluated the advantages 
and disadvantages of different toilet types, including conventional 
and vacuum toilets. The choice of toilet type markedly impacts sewer 
design, pumping requirements, sizing and materials. While this study 
focusses on urine-diverting toilets owing to their superior nutrient 
recovery efficiency, sewer-related details on the preliminary studies 
with other toilet types can be found in Supplementary Table 15.3.

Drinking water demand pipes were evaluated using the same 
methodology, and scenarios involving dual piping for a portion of the 
drinking water demand were evaluated. While a dual piping scenario 
could be implemented to address potential public concerns about 
consuming reclaimed water, this approach is not the primary focus 
of this study. The system is designed to produce drinking water qual-
ity for all household uses, and focussing on the dual piping scenario 
would not fully showcase the system’s potential to efficiently reclaim 
and purify wastewater for all purposes. Further details regarding the 
piping configurations, considerations and associated costs for this 
scenario can be found in Supplementary Section 15.5.

Sewer methodology and calculation are detailed in Supplemen-
tary Section 2.

Cost estimation
Information from technology manufacturers and specialized cost-
ing software (that is, CapdetWorks) were used to calculate the CapEx 
and OpEx costs of the water and wastewater treatment systems for all 
scenarios (Supplementary Tables 18.5 and 18.6). Values obtained from 
CapdetWorks were employed for the assessment of the UASB reactor 
and CAS. Benefits from the recovery of nutrients and biogas were 
estimated and included in the economic analysis178–181.

OpEx =
T
∑
t=1

OpExt
(1 + r)t

(2)

I =
T
∑
t=1

It
(1 + r)t

(3)

TC =
T
∑
t=1

OpExt
(1 + r)t

+ CApEx (4)
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OpEx and incomes (I) were calculated considering an interest rate 
(r) of 5% and a time horizon (T) of 30 years182. Equations 2 and 3 yield the 
total discounted lifetime OpEx and I, where OpExt and It are the costs 
and incomes, respectively, at the time t. Total costs (TC) were calculated 
according to equation (4) integrating both OpEx and CApEx.

To evaluate the economic performance (CapEx and OpEX) of 
the treatment alternatives, three cost scenarios were considered for 
each alternative, each representing different levels of investment 
and operational expenses. For the presented scenario—UD—all three 
cost scenarios assume the collection of brown, yellow and grey water 
separately and all treat the flows under the same process flow diagram 
(Supplementary Table 1.3). The lower-cost scenario is focused on 
meeting regulatory permits with the basic maintenance and remote 
and in situ monitoring costs, and the existing piping in buildings is 
expected to be repurposed for the grey water stream, as it repre-
sents 80% of the total conventional household flow183. Moreover, the 
lower-cost scenario considers a highly efficient granular-based pro-
cess (Nereda technology) for the grey water184. On the other hand, for 
the average-cost scenario, a MBR is used instead of the granular-based 
Nereda system because it is a well-established approach with high 
reliability, ease of operation, small space footprint and extensive 
data available for accurate cost quantification. Regarding the highest 
cost scenario, it assumes the installation of new grey water piping, 
state-of-the-art UD toilets from Laufen (Switzerland)185, enhanced 
remote monitoring, extended laboratory capabilities, increased 
labour hours instead of some remote monitoring and proactive main-
tenance measures.

To account for the influence of electricity prices and electricity 
grid mix on operational costs, we considered these factors across 
a range of scenarios in our analysis. These scenarios incorporated 
different cost ranges per kWh, reflecting current averages and highs 
within the United States kWh (ref. 186) and Europe187 (US $0.14 kWh−1, 
US $0.24 kWh−1 and US $0.34 kWh−1, respectively).

Composition of flows
Per capita wastewater production was assumed to be 108 l day−1, 
15 l day−1 and 1.5 l day−1 for grey, black and yellow water, respectively, 
considering the use of urine-diverting toilets capable of recovering 70% 
of urine10,24,158. Non-recovered urine is assumed to end up in the brown 
water sewer. The daily average of organic food waste is 150 g People 
Equivalent−1 (Supplementary Table 4.3).

While the possibility of deviations due to specific events is 
acknowledged, an average composition of wastewater in the system 
is assumed, as presented in Table 1. Concentrations are calculated from 
daily constituent load per capita and are in concordance with previous 
studies25,168,188–192. Food waste composition allows calculating the final 
composition of the treatment trained influent157,193,194.

The effluent composition presented in Table 2 is based on 
removal efficiencies and model results from SIMBA#152. The composi-
tion of the effluent from all simulated systems meets the guidelines 
established by the United States Environmental Protection Agency  
(US EPA) (EPA/600/R-12/618), WHO (GDWQ, 2011 and 2006) and the 
European Union (regulation 2020/741) for reuse in urban and bathing 
applications.

Vertical farming
We integrated a vertical farm with hydroponic culture methods into the 
water reuse infrastructure, allowing for the application of the fertilizers 
collected from the system to produce vegetables. Hydroponic systems 
use less water compared with open-field agriculture (Supplementary 
Discussion 26.1). They also exhibit lower supply chain-related emissions 
and facilitate cultivation in all environments38,77,86,195–199. The proposed 
vertical farm is based on a closed-loop concept where water and nutri-
ents are recycled, allowing for further reduction in input requirements 
by employing a nutrient film technique195,199,200.

The estimated production area per crop was obtained from an 
optimization model that considers capital and operational costs, mar-
ketable weight per plant and harvest cycle for each crop, consumer price 
and per capita consumption84–87,201. The total cultivation area in the hous-
ing block was estimated to be 913 m2 distributed across containerized 
units or by external facades. For the facades alternative, the harvest was 
distributed considering two facades of the block in a greenhouse-like 
structure and divided into four areas, each with an independent recircu-
lation loop to facilitate pumping and nutrient uptake. The positioning 
of the vertical farm is subject to the local sun path in each location (for 
example, in Barcelona, the two facades of the block were assumed to be 
oriented north-east to south-west). The closed-loop system solution 
based on RO-demineralized water utilizes treated effluent from the 
reuse system. To account for evaporation and minor losses inherent in 
the process, make-up water is to be replaced every 10 days (ref. 202) and 
is pumped at a flow rate of 1.5 l min−1 from supply tanks located within the 
shared basement together with wastewater treatment and germination 
area. The estimated water use for vertical farming is expected to be less 
than 2% of the decentralized treatment capacity.

Capital and operational costs are calculated on the basis of lit-
erature and supplier data, and further details can be found in Sup-
plementary Section 26.2.

Photovoltaic panels
The installation of solar panels was investigated in a set of cities rep-
resenting the different Köppen–Geiger climates (Supplementary 
Table 3.1): Barcelona and Santiago de Chile (Mediterranean climate), 
Amsterdam (oceanic or maritime climate), Hong Kong and Miami 

Table 1 | Composition of black water, undiluted fresh urine 
considering urea hydrolysis, grey water, organic food waste 
and the mixture of brown water, non-recovered urine and 
food waste

In mg l−1 BW YW GW FWa BrW BrW + nrYW + FW

COD 10,500 10,400 472 286 2,490 5,437

BOD 3,560 3,870 175 218 800 2,987

TN 2,000 8,800 8.00 6.00 80.0 335

NH4-N 1,800 463 3.00 0.8 72.0 88.5

TP 260 800 5.00 3.2 34.0 82.4

TSS 8,360 0.0 175 190 2,790 4,560

VSS 6,690 0.0 64.0 180 2,230 3,925
amg g−1 wet basis. BW, black water; YW, yellow water; GW, grey water; FW, food waste; BrW, 
brown water; nrYW, non-recovered yellow water.

Table 2 | Composition of treated brown water and grey 
water effluent for reuse

Parameter Effluent composition (mg l−1)

COD 1.24

BOD 0.65

TN 1.56

NH4-N 0.10

N-NO3 0.76

TP 0.04

TSS 0.02

VSS 0.01

COD, Chemical Oxygen Demand (mg l−1); BOD, Biochemical Oxygen Demand (mg l−1); TN, 
Total Nitrogen (mg l−1); NH4-N, Ammonium Nitrogen (mg l−1); N-NO3, Nitrate Nitrogen (mg l−1); 
TP, Total Phosphorus (mg l−1); TSS, Total Suspended Solids (mg l−1); VSS, Volatile Suspended 
Solids (mg l−1).
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(tropical rainforest climate), and Seoul and Toronto (humid continental 
climate). The photovoltaic installation was composed of direct current 
monocrystalline 425 W panels (SunPower) with a 20% efficiency distrib-
uted across 75% of the block roof surface. Calculations for yearly elec-
tricity output from solar installation were based on average available 
sun hours in the specific location and solar panel performance203–208. 
Domestic demands were estimated according to electric load sizing 
and verified by comparison to the country’s per capita electricity con-
sumption186. The size of the solar system was 900 kW and the occupied 
area on the roof was around 4,000 m2. Lithium batteries (Dragonfly 
Energy) were assumed and sizing accounted for 1.5 backup days. The 
facility’s power demand and sizing of direct current to alternating 
current inverters were dependent on the maximum expected load 
size considering coincidence factors per household and between all 
dwellings in the housing development.

Risk assessment and treatment
We employed a comprehensive risk assessment approach to guide the 
design of our decentralized water system (Supplementary Table 25.2). 
We evaluated potential hazards across various water sources (rainwa-
ter, grey water, biosolids and so on) using a detailed risk matrix and 
adopted validated approaches to ensure consistently high-quality 
water that meets recommended virus removal targets and withstand 
some of the challenges of small system operations20,64. This analysis 
considered microbial contamination, chemical pollutants and emerg-
ing contaminants. On the basis of this risk assessment, we tailored 
treatment processes (for example, advanced monitoring, high-total 
solids processes and confined gases management) to match the spe-
cific needs of each water source and reuse application. This approach 
ensures responsible resource recovery while prioritizing environmen-
tal sustainability and public health.

We understand the importance of advanced monitoring to mini-
mize risk and build public trust. Our system incorporates a robust 
monitoring programme that would satisfy the most stringent water 
quality requirements, even if the reused water is not for direct potable 
consumption. While this conservative approach may increase initial 
costs, we believe it is crucial for public acceptance. We have conducted 
a detailed cost analysis of our selected monitoring approach, consider-
ing laboratory tests, sensors (CapEx and OpEx) and real-time remote 
monitoring (Supplementary Tables 24.1–24.5).

For further context, please note that our risk assessment and 
mitigation strategies are outlined in detail in the paper’s Supplemen-
tary Information. We have incorporated internationally recognized 
guidelines (for example, the WHO and US EPA) and existing successful 
cases20,64, and may consider using quantitative microbial risk assess-
ment tools in the future. While our initial monitoring plan is designed 
for maximum safety, costs could potentially be reduced over time with 
in situ analyses, optimization based on performance data and techno-
logical advancements in sensors and control systems (Supplementary 
Discussion 25).

Data availability
Output data produced by our analysis are deposited in a public data-
base available at https://figshare.com/s/8aafb87d3e2cfccacd97.
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