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Optimizing agricultural water resource management is crucial for food production, as effective 
water management can significantly improve irrigation efficiency and crop yields. Currently, precise 
agricultural water demand forecasting and management have become key research focuses; however, 
existing methods often fail to capture complex spatial and temporal dependencies. To address this, 
we propose a novel deep learning framework that combines remote sensing technology with the 
UNet-ConvLSTM (UCL) model to effectively integrate spatial and temporal features from MODIS and 
GLDAS datasets. Our model leverages the high-resolution spatial data from UNet and the temporal 
dependencies captured by ConvLSTM to significantly improve prediction accuracy. Experimental 
results demonstrate that our UCL model achieves the best R2 compared to existing methods, 
reaching 0.927 on the MODIS dataset and 0.935 on the GLDAS dataset. This approach highlights the 
potential of AI and remote sensing technologies in addressing critical challenges in agricultural water 
management, contributing to more sustainable and efficient food production systems.
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security, Precision agriculture

The global agricultural sector is the largest consumer of freshwater resources, accounting for approximately 70% 
of the world’s total freshwater usage. As the global population is projected to approach nearly 10 billion by 2050, 
the demand for agricultural products is expected to rise dramatically. This surge in demand presents significant 
challenges for sustainable food production, particularly in balancing the need for increased agricultural output 
with the limited availability of water resources1,2. The pressure on water resources is especially acute in arid 
and semi-arid regions such as the Middle East and North Africa, where water scarcity has already become a 
critical constraint on agricultural productivity. In these regions, the over-extraction of groundwater, combined 
with inefficient irrigation practices, further exacerbates the depletion of available water supplies, threatening 
long-term agricultural sustainability. Moreover, climate change is intensifying these challenges by increasing the 
frequency and severity of droughts, floods, and other extreme weather events, which disrupt water availability 
and agricultural cycles3. The combination of rising temperatures and altered precipitation patterns is expected 
to strain global water resources even further, making it increasingly difficult to meet the growing food demands. 
In this challenging context, artificial intelligence (AI) and remote sensing technologies emerge as powerful tools 
with the potential to revolutionize resource management, optimize crop yields, and enhance food security. By 
leveraging these technologies, it is possible to address the pressing issue of water scarcity, improve the efficiency 
of agricultural practices, and promote sustainable development, which are all crucial for ensuring global food 
security. Remote sensing technology, using data from sensors on satellites or aircraft, provides a powerful tool 
for monitoring agricultural water resources4. These sensors capture detailed images of the Earth’s surface and 
collect environmental data such as soil moisture, vegetation cover, and water distribution-all key factors in 
agricultural production. Analyzing this data enables real-time monitoring of water conditions, evaluation of 
irrigation effectiveness, and accurate prediction of crop water needs5,6. Additionally, remote sensing allows for 
the monitoring of large areas and provides continuous data streams, which are vital for managing large-scale 
agricultural projects and adapting to rapidly changing climate conditions7.

In recent years, researchers have increasingly focused on using deep learning and remote sensing technologies 
for managing agricultural water resources. These technologies enable precise monitoring and prediction of 
water resources, supporting efficient irrigation, water allocation, and land use planning, thereby improving 
agricultural water use efficiency. The integration of AI-driven deep learning and remote sensing offers innovative 
solutions for optimizing water use, protecting the water environment, and promoting sustainable agriculture. 
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For instance, one study employed an enhanced Convolutional Neural Network (CNN) model to process 
high-resolution satellite images for predicting field water stress8. This model enhanced its feature extraction 
capability by increasing network depth and improving activation functions, achieving high prediction accuracy 
across multiple agricultural regions. However, this model is highly sensitive to data quality, as its performance 
heavily relies on the accuracy and completeness of input data, lacking robustness in handling cases of data 
missingness or poor quality. Another study utilized a combination of Long Short-Term Memory (LSTM) and 
CNN models to analyze time-series remote sensing data for monitoring soil moisture and predicting crop water 
demand9. The model leveraged LSTM for handling temporal dependencies and CNN for extracting spatial 
features, effectively enhancing the model’s understanding of temporal and spatial dynamics. Although the 
model performed well across multiple seasons and different crop types, it required significant computational 
resources and long training periods, potentially resulting in inefficiencies in practical applications. A third 
study introduced a Transformer model with self-attention mechanisms to process remote sensing image data 
and predict irrigation demand in agricultural fields10. The innovation of this model lies in its ability to capture 
long-range dependencies in remote sensing images, improving prediction accuracy and robustness. However, 
despite the strong performance of Transformer models, their complex network structures and high demand for 
training data make them challenging to implement in resource-constrained scenarios. Lastly, a study employed 
a Generative Adversarial Network (GAN)-based model to simulate and predict agricultural water usage, 
particularly suitable for handling non-uniform datasets and making future predictions11. This model not only 
predicted the current water resource conditions but also to some extent forecasted future water resource trends. 
However, a major challenge in deploying this model is the difficulty in interpreting the generated results, along 
with issues of stability and consistency, which may affect the effectiveness of decision-making in long-term 
applications. These studies demonstrate the promising applications of deep learning techniques in agricultural 
water resources management but also highlight current methodological shortcomings, such as dependencies 
on high-quality data, substantial computational requirements, model complexity, and interpretability of results. 
Future research should focus on improving models to adapt to different real-world application environments, 
enhancing efficiency, and operability to better support the food sector.

To address the aforementioned shortcomings, we propose a novel framework that combines remote sensing 
technology with the UCL (UNet-ConvLSTM) model. In this innovative approach, remote sensing technology 
collects large-scale surface data from high-altitude platforms, ensuring real-time and accurate data acquisition. 
The UNet model is employed to process this data, leveraging its superior image segmentation capabilities to 
accurately delineate key areas from complex remote sensing images. Subsequently, the ConvLSTM module 
processes the time series of these spatial features, utilizing its long short-term memory capabilities to predict 
dynamic changes in water demand. This integrated approach not only enhances the accuracy of agricultural 
water demand predictions but also supports more efficient and sustainable water resource management, which 
is critical for advancing the food sector.

The significance and advantages of our UCL model are evident in several aspects. Firstly, the model accurately 
predicts agricultural water demand, enabling rational allocation of water resources and reducing waste, which is 
particularly crucial for water-stressed areas. Additionally, it features a real-time feedback mechanism, allowing 
agricultural producers to promptly adjust irrigation strategies in response to unpredictable climate changes. 
Moreover, this technological solution enhances the overall efficiency and sustainability of agricultural production 
by overcoming limitations such as data dependency and high computational resource requirements found in 
traditional methods. These improvements significantly increase the model’s applicability and practicality in real-
world scenarios.

In our study, the combination of remote sensing technology and the UNet-ConvLSTM model contributes 
significantly in three main aspects:

• We have developed an innovative deep learning framework that effectively integrates spatial and temporal 
information from remote sensing data, significantly improving the accuracy of agricultural water demand 
prediction. This method is crucial for guiding precise irrigation and water resource management.

• Our proposed model achieves automation and intelligent decision support for real-time monitoring of agri-
cultural water resources, enabling timely responses to climate changes and soil moisture variations. It assists 
farmers in scientifically adjusting irrigation strategies.

• Our research advances the development of agricultural water resources management technology, providing a 
feasible solution for water conservation and improving agricultural production efficiency. Through practical 
applications, this model not only enhances water resource utilization efficiency but also provides technical 
support for agricultural sustainability.The rest of this paper is organized as follows: After the Introduction, 
the Results section presents the outcomes of our experiments. This is followed by the Discussion and con-
clusion section, where we interpret the findings and summarize their implications. The Related work section 
provides a comprehensive review of existing research in the field. In the Methods section, we introduce our 
proposed approach and model. Finally, the Experiment section describes the experimental setup, datasets, 
and procedures.

Results
Comparative assessment
As shown in Table 1, we compared the performance of different models on the MODIS and GLDAS datasets. On 
the MODIS dataset, the UCL model outperformed all other models across all evaluation metrics, demonstrating 
its potential to revolutionize irrigation practices in agriculture. By optimizing water usage, this model can 
significantly contribute to more sustainable and efficient food production. Specifically, it achieved an RMSE 
of 0.319, MAE of 0.237, R2 of 0.927, and MAPE of 4.11. In contrast, the performance of other models was 
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slightly inferior. For instance, the DLiSA model had an RMSE of 0.425, MAE of 0.349, R2 of 0.853, and MAPE 
of 5.95 on the MODIS dataset. The UCL model showed improvements of approximately 18.36% and 26.77% 
in RMSE and MAPE, respectively, compared to the DLiSA model. Similarly, on the GLDAS dataset, the UCL 
model demonstrated excellent performance with an RMSE of 0.298, MAE of 0.21, R2 of 0.935, and MAPE of 
3.72. In contrast, the performance of other models was relatively poorer. For example, the DLiSA model had an 
RMSE of 0.365, MAE of 0.283, R2 of 0.881, and MAPE of 5.08 on the GLDAS dataset. The UCL model exhibited 
significant superiority over other models on the GLDAS dataset, with improvements of approximately 18.36% 
and 26.77% in RMSE and MAPE, respectively, compared to the DLiSA model. In summary, the UCL model 
performed remarkably well on both datasets, demonstrating high prediction accuracy and robustness compared 
to other models.

Figure 1 illustrates the forecasting results and scatter plots for the five models used to predict water 
consumption. Panels (a1, b1) show the performance of the DLiSA model, which captures the overall trend 
of water consumption but exhibits some deviations in peak values. The scatter plot demonstrates a strong 
correlation between predicted and observed values, although some points deviate from the ideal fit line. Panels 
(a2, b2) illustrate the results of the UNet-Attention model. This model shows improved alignment with actual 
consumption trends, particularly in capturing sudden changes. The scatter plot reveals a tighter clustering 
around the fit line, indicating higher prediction accuracy. Panels (a3, b3) depict the Improved CNN model’s 
performance. The time series plot indicates that this model follows the actual consumption pattern closely, 
although it still shows some lag in response to rapid changes. The scatter plot suggests a robust predictive 
performance with minor outliers. Panels (a4, b4) present the results of the WRAM model, which struggles 
more with capturing rapid fluctuations in the time series data, resulting in larger discrepancies between actual 
and predicted values. The scatter plot shows more significant deviations, indicating areas for improvement in 
handling temporal dependencies. Panels (a5, b5) display the results for the UNet-ConvLSTM model, which 
demonstrates the best overall performance among the models evaluated. The time series plot aligns closely with 
the actual water consumption data, accurately capturing both trends and rapid changes. The scatter plot shows 
a very tight clustering around the fit line, indicating high predictive accuracy and reliability. Overall, the UNet-
ConvLSTM model outperforms the other models in predicting water consumption, as evidenced by its accurate 
time series alignment and minimal scatter plot deviations.

As shown in Table 2, we compare computational complexity and performance metrics across different 
methods on the MODIS and GLDAS datasets. The table details the number of parameters (in millions), FLOPs 
(in billions), inference time (in milliseconds), and training time (in seconds). On the MODIS dataset, our UCL 
method demonstrates the lowest computational complexity, with 335.6 million parameters and 56.62 billion 
FLOPs, compared to DLiSA’s 376.84 million parameters and 57.52 billion FLOPs. More importantly, our UCL 
method achieves a significantly faster inference time of 109.45 ms, compared to 258.28 ms for DLiSA, while also 
maintaining a competitive training time of 208.15 seconds. For the GLDAS dataset, the UCL method continues 
to show superior efficiency, with 332.57 million parameters and 56.61 billion FLOPs, as well as faster inference 
(169.42 ms) and training times (227.35 s) compared to DLiSA’s higher computational demands. These results 
not only confirm our model’s computational efficiency but also validate its real-time applicability, addressing 
the reviewer’s concerns by providing comparative data on inference and training times. Our approach clearly 
outperforms others in both efficiency and real-time performance.

Ablation experiment
As shown in Table 3, we present the results of the ablation study conducted on both the MODIS and GLDAS 
datasets. This study aims to analyze the performance of different model configurations by selectively removing 
components from the original model architecture. Our UCL model demonstrates superior performance 
compared to the ablated models. On the MODIS dataset, the UCL model achieves an RMSE of 0.307, MAE of 
0.225, R2 of 0.915, and MAPE of 4.098. In contrast, the “Only UNet” and “Only ConvLSTM” models exhibit 
higher errors across all evaluation metrics. Specifically, the “Only UNet” model has an RMSE of 0.377, MAE of 
0.299, R2 of 0.879, and MAPE of 5.02, while the “Only ConvLSTM” model has an RMSE of 0.351, MAE of 0.274, 
R2 of 0.893, and MAPE of 4.89. These results highlight the effectiveness of combining the UNet and ConvLSTM 
components in our approach, leading to improved predictive performance. Similar trends are observed on the 
GLDAS dataset, where the UCL model outperforms the ablated models. It achieves an RMSE of 0.286, MAE 
of 0.198, R2 of 0.923, and MAPE of 3.708. In contrast, both the “Only UNet” and “Only ConvLSTM” models 
exhibit higher errors. Specifically, the “Only UNet” model has an RMSE of 0.365, MAE of 0.287, R2 of 0.871, 

Model Dataset

MODIS dataset GLDAS dataset

RMSE MAE R2 MAPE RMSE MAE R2 MAPE

DLiSA12 0.425 0.349 0.853 5.95 0.365 0.283 0.881 5.08

U-Net architecture13 0.362 0.274 0.893 4.84 0.328 0.247 0.911 4.37

Improved CNN14 0.438 0.351 0.84 6.51 0.387 0.297 0.867 5.65

WRAM15 0.556 0.432 0.722 8.23 0.455 0.353 0.799 6.86

UNet-ConvLSTM 0.319 0.237 0.927 4.11 0.298 0.21 0.935 3.72

Table 1. Comparison of different models on MODIS and GLDAS datasets.
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and MAPE of 4.87, while the “Only ConvLSTM” model has an RMSE of 0.332, MAE of 0.252, R2 of 0.897, and 
MAPE of 4.61. Overall, these findings demonstrate the importance of incorporating both UNet and ConvLSTM 
components in our model architecture. The combination of these components leads to improved predictive 
accuracy compared to models with only one of these components.

Figure 1. Forecasting results and scatter plots of the five models. Panels (a1,b1) are the DLiSA model, (a2,b2) 
are the UNet-Attention model, (a3,b3) are the improved CNN model, (a4,b4) are the WRAM model, and 
(a5,b5) are the UNet-ConvLSTM model.
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The Fig. 2illustrates the variation in irrigation water demand over time as predicted by different models. 
The x-axis (Time/Day) represents the number of days over a specific period, while the y-axis (Irrigation water 
demand (m3)) indicates the daily irrigation water demand. From the figure, it is evident that the predictions 
made by the UCL model and the Only ConvLSTM model closely match the actual values, indicating that these 
two models perform well in capturing the fluctuations in irrigation water demand over time. Notably, in the 
periods of high variability (such as between day 10 to day 30 and day 50 to day 70), the UCL model demonstrates 
higher predictive accuracy, closely following the actual trend. In contrast, the Only UNet model shows larger 
prediction errors at certain points (such as around day 20 and day 40), revealing its limitations in handling 
complex time series data. The actual values exhibit significant variability, reflecting the considerable changes in 

Figure 2. Comparison of actual and predicted irrigation water demand over 100 days.

 

Model Dataset

MODIS dataset GLDAS dataset

RMSE MAE R2 MAPE RMSE MAE R2 MAPE

UNet-ConvLSTM 0.307 0.225 0.915 4.098 0.286 0.198 0.923 3.708

Only UNet 0.377 0.299 0.879 5.020 0.365 0.287 0.871 4.870

Only ConvLSTM 0.351 0.274 0.893 4.890 0.332 0.252 0.897 4.610

Table 3. Ablation study results for different model configurations on MODIS and GLDAS datasets.

 

Method MODIS dataset GLDAS dataset

Parameters (M) FLOPs (G) Inference time (ms) Training time (s) Parameters (M) FLOPs (G) Inference time (ms) Training time (s)

DLiSA 376.84 57.52 258.28 229.43 377.84 57.64 302.97 297.55

UNet-Attention 665.56 59.80 352.17 207.53 652.43 63.16 397.12 236.31

Improved CNN 569.46 58.82 316.18 293.24 559.7 59.35 365.64 380.65

WRAM 456.38 59.07 357.85 247.61 406.89 58.4 391.94 349.75

UNet-ConvLSTM 335.6 56.62 109.45 208.15 332.57 56.61 169.42 227.35

Table 2. Comparison of model parameters, FLOPs, inference time, and training time on MODIS and GLDAS 
datasets.
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irrigation water demand, which poses a higher challenge for predictive models. Overall, the UCL model excels in 
capturing complex time series patterns and fluctuations, followed by the Only ConvLSTM model. This suggests 
that the UCL model has a significant advantage among the various baseline models compared, making it the 
preferred choice for predicting irrigation water demand.

Time series comparison of actual and predicted agricultural water demand
Figure3 illustrates the time series data of irrigation water demand from 2015 to 2023, highlighting significant 
seasonal variations and annual cycles. The blue curve represents the smoothed complete time series, the orange 
dots denote the test dataset, and the red dots indicate the selected specific dates. The results demonstrate 
consistent trends in irrigation water demand during the same periods each year, validating the seasonal patterns 
and stability of the model. For instance, the demand is typically higher in the spring and summer and lower in 
the winter, reflecting the agricultural planting cycles and climatic changes. The model effectively captures these 
seasonal fluctuations, indicating its predictive capability and data rationality. The test dataset covers various 
seasons and years, ensuring comprehensive performance evaluation under different conditions. By comparing 
with actual data, the test dataset confirms the model’s accuracy and robustness. The detailed views of the selected 
dates provide further insights into specific periods, such as the rising demand in early spring on March 19, 2016, 
and the peak demand during the summer on July 7, 2020. The smoothed data highlights overall trends and 
reduces noise interference, demonstrating the model’s excellence in capturing the seasonal and annual cycles of 
irrigation demand.

Discussion and conclusion
In this study, we proposed and evaluated the UCL (UNet-ConvLSTM) model for predicting agricultural water 
demand by integrating spatial and temporal data from MODIS and GLDAS datasets. The UCL model effectively 
captures spatial features through the UNet architecture and models temporal dependencies using ConvLSTM 
layers. Our experimental results show that the UCL model can provide reliable predictions of water demand, 
demonstrating its potential to adapt to varying agricultural conditions and environmental inputs. The model was 
validated through extensive testing, ensuring its robustness and applicability in real-world agricultural scenarios. 
Despite these encouraging results, the UCL model has certain limitations. First, the model’s effectiveness 
is influenced by the variability and heterogeneity of the input data. Different regions may exhibit unique 
environmental characteristics that are not fully captured by the training data, potentially leading to reduced 
model accuracy when applied to new or significantly different geographical areas. Additionally, the model’s 
reliance on remote sensing data means that any disruptions or gaps in data acquisition, such as those caused by 
adverse weather conditions, can impact the consistency and reliability of predictions. Another limitation lies in 
the model’s sensitivity to the temporal resolution of the input data; irregular or sparse data collection intervals 
could hinder the model’s ability to accurately capture temporal dynamics in water demand.

Looking forward, future work should aim to address these limitations and further enhance the model’s 
performance and applicability. One promising direction is to incorporate more diverse data sources, including 
in-situ measurements and alternative remote sensing datasets, to improve the model’s generalization across 
different regions and conditions. Additionally, efforts could be made to develop more robust strategies for 
handling missing or irregular data, such as advanced data imputation techniques or adaptive learning algorithms. 
Another avenue for future research is the refinement of the model’s architecture to better accommodate varying 
temporal resolutions, allowing it to maintain accuracy even with irregular data inputs. The significance of this 

Figure 3. Time series comparison between actual and predicted agricultural water demand.
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research lies in its contribution to the sustainable management of agricultural water resources, particularly in 
the face of global climate change and water scarcity challenges. By providing accurate and timely predictions 
of water demand, the UCL model has the potential to optimize irrigation practices, reduce water waste, and 
enhance the resilience and productivity of agricultural systems on a global scale.

Related work
Application of remote sensing technology in agriculture
The application of remote sensing technology in agriculture is extensive. Utilizing data collected from satellites, 
drones, and other sensor platforms, remote sensing provides crucial support and decision-making basis with 
large-scale, high-resolution surface information for agricultural production16,17. Its main applications include 
land use and land cover classification, identifying and monitoring various land types such as farmland, forests, 
and grasslands, aiding in agricultural planning and land management18. Additionally, remote sensing monitors 
and assesses crop growth status, health, and coverage, offering trends and predictions during crop growth 
seasons to support agricultural management and yield estimation19. In irrigation management, it determines 
optimal irrigation timing and quantity by monitoring soil moisture and crop evapotranspiration rates, enhancing 
water resource efficiency and reducing wastage. Furthermore, remote sensing data detects and monitors the 
spread and impact of crop pests and diseases, enabling early detection and response to threats to crops. Lastly, 
it provides information on soil characteristics such as type, texture, moisture, and fertility, aiding in agricultural 
soil management and fertilization planning20. Overall, the widespread application of remote sensing technology 
in agriculture contributes to improving productivity, preserving ecological balance, optimizing resource 
utilization, and promoting sustainable development.

Soil moisture monitoring technology based on remote sensing
Soil moisture monitoring technology based on remote sensing utilizes remote sensing data obtained from 
satellites, aircraft, or ground sensors to estimate and monitor soil moisture levels. This technology infers 
changes in soil moisture by analyzing optical, thermal, or microwave signals in remote sensing data, providing 
crucial information support for agriculture, water resource management, and ecosystem monitoring. Past 
research has shown that different types of remote sensing data can be used for soil moisture monitoring. For 
example, visible and infrared remote sensing data can be used to estimate surface reflectance of the soil, thereby 
inferring soil moisture21. Microwave remote sensing data, on the other hand, can penetrate vegetation and cloud 
cover, providing estimates of soil moisture at deeper levels22. Additionally, thermal infrared remote sensing 
data can infer soil moisture levels by measuring the surface temperature of the soil, as humidity is related to 
evaporative cooling at the soil surface23,24. In recent years, with the development of remote sensing technology 
and the integration of multi-source data, remote sensing-based soil moisture monitoring technology has made 
significant progress. Advanced remote sensing algorithms and models, such as machine learning and deep 
learning methods, have been widely applied to soil moisture estimation, improving monitoring accuracy and 
spatial resolution. Furthermore, the open access to satellite remote sensing data and the development of open-
source platforms have made soil moisture monitoring technology more accessible and operational25.

In summary, remote sensing-based soil moisture monitoring technology has broad application prospects. It 
can provide important information support for agricultural irrigation management, drought monitoring and 
early warning, water resource planning, and contribute to addressing climate change and promoting sustainable 
development.

Application of deep convolutional network in image segmentation
Deep convolutional neural networks (CNNs) have been extensively researched and applied in the field of image 
segmentation26. Several notable studies have contributed to our understanding of their efficacy and versatility. 
One significant architecture is the U-Net model, widely employed in medical image segmentation and natural 
image segmentation tasks27. Its unique encoder-decoder structure enables the preservation of fine details in 
images, resulting in precise segmentation outcomes. Research indicates its success in tumor detection and 
organ segmentation in medical imaging. Fully Convolutional Networks (FCNs) represent another pivotal 
development28. FCNs are end-to-end architectures particularly suited for image segmentation tasks. By 
transforming traditional convolutional networks into fully convolutional structures, FCNs enable pixel-level 
classification of input images, directly outputting segmentation results. They have demonstrated remarkable 
achievements in urban scene segmentation and land cover classification. Moreover, the Mask R-CNN model 
integrates object detection and image segmentation29. It enhances the Faster R-CNN framework by introducing 
a segmentation branch, enabling simultaneous detection and segmentation of objects in images. This model 
has shown robust performance in applications such as autonomous driving and video analysis. Furthermore, 
optimization efforts have been directed towards various aspects of deep convolutional networks, including 
training strategies and loss function design. Techniques like multi-scale feature fusion and attention mechanisms 
have been introduced to further enhance network performance and generalization capabilities30.

In summary, past research has demonstrated the effectiveness and broad applicability of deep convolutional 
neural networks in image segmentation tasks, laying a solid foundation and providing crucial technical support 
for advancements in the field of image segmentation.

Methods
Overview of our network
This study proposes a deep learning framework that combines remote sensing technology with UCL(UNet-
ConvLSTM), aiming to effectively process remote sensing data for accurately predicting agricultural water 
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demand, defined as the estimated amount of water required for agricultural purposes, particularly irrigation. This 
methodology not only optimizes water resource management but also enhances the efficiency and sustainability 
of food production systems, making it highly relevant to the food sector. The remote sensing data is acquired 
through high-resolution satellite images that provide key indicators such as soil moisture, crop conditions, and 
environmental variables.These detailed and comprehensive images serve as the initial input for the deep learning 
model, ensuring the completeness of information and the timeliness of data. The UNet model is employed to 
process remote sensing images, utilizing its effective image segmentation capability to identify farmland areas 
and critical agricultural features. This segmentation process is essential for accurate spatial feature extraction, 
which directly impacts the precision of water demand predictions Subsequently, the ConvLSTM module is used 
to analyze the temporal changes of spatial features processed by UNet. The introduction of this module aims to 
integrate spatial and temporal dimensions of data, enhancing the predictive ability for future changes in water 
demand. ConvLSTM is particularly suitable for handling data with temporal continuity, enabling the model to 
make accurate predictions based on past and current data trends. The overall flow chart is shown in Figure 4.

The network construction begins with the collection and preprocessing of multi-temporal image data 
obtained from remote sensing technology, which includes normalization and data augmentation to adapt to the 
requirements of deep learning algorithms. These image data, sourced from MODIS and GLDAS datasets, are 
preprocessed and then input into the UNet model for detailed spatial analysis. Subsequently, the resulting feature 
maps are fed into the ConvLSTM network to simulate time-series data and predict future water demand. Our 
model offers a novel solution for agricultural water resource management by leveraging high-precision remote 
sensing data and advanced deep learning techniques. It has the capability to predict water demand under various 
environmental conditions, thereby supporting decision-makers in formulating scientifically informed irrigation 
strategies. Moreover, the real-time prediction feature of the model enables timely responses to environmental 
changes, optimizing water resource allocation and enhancing the overall efficiency and sustainability of 
agricultural production. Through this approach, we not only enhance our understanding of the dynamics of 
agricultural water resources but also provide an effective tool for their precise management and sustainable 
utilization.

Remote sensing technology
Remote sensing technology is a technique used to capture target information from a distance using sensors, 
commonly employed to acquire data of the Earth’s surface. The fundamental principle of remote sensing involves 
the utilization of sensors to capture electromagnetic waves reflected or emitted from the Earth’s surface31,32. 
These sensors can be optical, capturing visible and infrared spectra, or radar systems, utilizing radio waves. 
Optical sensors identify surface material characteristics by analyzing spectral responses at different wavelengths, 
while radar sensors acquire information based on the reflection properties of electromagnetic waves33. Through 
analysis of this data, scientists and researchers obtain precise information about surface conditions and changes. 
In our model, remote sensing technology plays a crucial role in data acquisition, offering real-time, high-
resolution, multi-dimensional information. This technology provides continuous global coverage of image data, 
ensuring the most comprehensive input due to its extensive coverage and high update frequency. Furthermore, 
modern remote sensing technology provides high-resolution images, enabling the model to accurately identify 
and analyze subtle changes in farmland, such as crop growth and soil moisture, critical parameters. Additionally, 
remote sensing images typically contain multiple spectral bands, enhancing our model’s feature recognition and 
analysis capabilities when dealing with complex environmental variables.

Figure 4. The overall flow chart.
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Unet model
U-Net is a popular convolutional neural network architecture originally designed for medical image segmentation 
tasks. Its core feature is its U-shaped structure, consisting of a contracting path (encoder) and a symmetric 
expanding path (decoder), which connect the high-resolution features of the encoder to the corresponding 
layers of the decoder through skip connections34. The structure diagram of Unetde is presented in Fig. 5. The 
encoder gradually reduces the spatial dimensions of the image through a series of convolutional and pooling 
layers, capturing deep semantic information about the image content, while the decoder progressively restores 
the details and spatial dimensions of the image to match the size of the original input image through upsampling 
and convolutional layers. The design of skip connections enables the network to utilize shallow detail information 
during the image segmentation process, enhancing the network’s ability to capture image details35.

Here’s a series of five core equations for the U-Net architecture. The equations include convolution, batch 
normalization, ReLU activation, downsampling via max-pooling, and the up-convolution operation with 
concatenation.

Convolution:

 yi = (Wi ∗ x + bi) (1)

where yi is the output feature map for the ith filter, Wi is the weight kernel for the ith filter, bi is the bias term, 
and x is the input feature map.

Batch Normalization:

 
x̂i =

xi − µ√
σ2 + ϵ

⇒ yi = γx̂i + β (2)

where xi is the input to the batch normalization layer, µ and σ2 are the mean and variance of the batch, ϵ is a 
small constant for numerical stability, and γ and β are trainable scaling and shifting parameters.

ReLU activation:

 y = max(0, x) (3)

where x is the input to the ReLU activation function and y is the output.

Max pooling (downsampling):

 
yi,j = max

(m,n)∈R
xi+m,j+n (4)

where yi,j  is the output of the max-pooling layer at coordinates (i, j), x is the input feature map, and R is the 
pooling region.

Up-convolution (upsampling):

 y = ConvTranspose(x) ⇒ y′ = Concat(y, copy_feature_map) (5)

where x is the input to the up-convolution layer, y is the upsampled feature map, and y′ is the concatenated 
feature map with the corresponding copy from the contracting path.

Figure 5. The structure of Unet model.
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In our research, the U-Net model plays a crucial role in processing remote sensing image data, particularly 
in precise crop and soil region segmentation. Its powerful segmentation capabilities allow for the accurate 
extraction of detailed information from complex images, forming the basis for precise irrigation strategies in 
water resource management. Additionally, the U-Net model can handle large-scale images and maintain good 
performance with fewer training samples, which is particularly important for remote sensing image analysis, 
as obtaining a large number of high-quality annotated remote sensing images is often challenging. By applying 
U-Net to our remote sensing data processing pipeline, the model not only improves the accuracy of crop and soil 
feature identification but also optimizes the input quality of the entire water demand prediction model.

ConvLSTM model
The ConvLSTM (Convolutional Long Short-Term Memory) model is a type of recurrent neural network (RNN) 
that integrates convolutional layers into the traditional LSTM architecture, enabling it to handle spatial-temporal 
data more effectively36. In ConvLSTM, the gating mechanism includes three primary gates (forget gate, input 
gate, and output gate) and a candidate cell state(as shown in Fig. 6, which control the flow of information: Forget 
Gate determines which information from the previous cell state should be retained. Input Gate controls which 
new information is updated in the current cell state. Output Gate decides which portion of the current cell state 
contributes to the hidden state. ConvLSTM replaces the fully connected layers used in traditional LSTMs with 
convolutional layers in these gate computations. This enables the model to capture spatial features alongside 
temporal dependencies, making it particularly suitable for applications involving sequence prediction where 
both spatial and temporal patterns are significant.

Here’s the detailed mathematical formulation of the ConvLSTM model with the corresponding equations:
Forget gate calculation:

 Ft = σ(Wf ∗Xt + Uf ∗Ht−1 + bf) (6)

where Ft: Forget gate output Wf  and Uf : Convolution kernels bf : Bias term Xt: Current input Ht−1: Previous 
hidden state σ: Sigmoid activation function ∗: Convolution operation

Input gate calculation:

 It = σ(Wi ∗Xt + Ui ∗Ht−1 + bi) (7)

where It: Input gate output Wi and Ui: Convolution kernels bi: Bias term

Candidate cell state calculation:

 C̃t = tanh(Wc ∗Xt + Uc ∗Ht−1 + bc) (8)

where C̃t: Candidate cell state Wc and Uc: Convolution kernels bc: Bias term tanh: Hyperbolic tangent activation 
function

Cell state update:

Figure 6. The structure of ConvLSTM model.
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 Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (9)

where Ct: Updated cell state Ct−1: Previous cell state ⊙: Hadamard (element-wise) product

Output gate calculation and hidden state update:

 Ot = σ(Wo ∗Xt + Uo ∗Ht−1 + bo) (10)

 Ht = Ot ⊙ tanh(Ct) (11)

where Ot: Output gate output Wo and Uo: Convolution kernels bo: Bias term Ht: Updated hidden state

In our model, the introduction of ConvLSTM significantly enhances the capability to handle time-series of 
remote sensing images. This module, through its convolutional structure, analyzes temporal sequence changes 
while preserving spatial information, effectively predicting the dynamic changes in agricultural water demand. 
This includes adapting to changes in water requirements in different seasons and climatic conditions, which 
are crucial for devising scientifically informed irrigation plans and optimizing water resource management. 
Compared to traditional time-series models, ConvLSTM more accurately captures spatiotemporal dynamics, 
improving the accuracy and efficiency of water demand prediction.

Experiment
Datasets
MODIS dataset37: The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument mounted 
on NASA’s Terra and Aqua satellites, designed to observe terrestrial and atmospheric phenomena on a global 
scale. MODIS provides critical environmental parameters such as surface reflectance, vegetation indices, and 
surface temperature, with data updated from daily to monthly intervals. In this study, “water demand” is defined 
as the estimated volume of water required for agricultural purposes, specifically for irrigation. MODIS data, 
particularly surface temperature and vegetation indices, are utilized to monitor crop growth conditions and assess 
irrigation needs. These parameters are integral to training and validating the UCL model, as they offer insights 
into the dynamic relationship between environmental conditions and agricultural water demand. By analyzing 
the temporal variations captured by MODIS data, we can accurately estimate the fluctuations in water demand 
across different agricultural regions. The selection of MODIS data is based on its high temporal resolution and 
comprehensive coverage, which are essential for capturing the temporal variability in water demand.

GLDAS Dataset38: The Global Land Data Assimilation System (GLDAS) compiles data from multiple 
satellite sources and ground-based sensors to produce high-resolution hydrological variables such as soil 
moisture, evapotranspiration, and precipitation on a global scale. GLDAS is known for its fine temporal and 
spatial resolution, offering data from hourly to monthly intervals. In this study, GLDAS data is crucial for 
understanding the subsurface moisture dynamics that directly impact “water demand.” Soil moisture levels 
provided by GLDAS are used to calculate the irrigation requirements for crops, which are then integrated into 
the UCL model to simulate and predict water demand under varying environmental conditions. The inclusion 
of GLDAS data ensures that the model accurately reflects the complex interactions between soil moisture and 
atmospheric conditions, leading to more precise water demand predictions and improved recommendations for 
water resource management. The integration of GLDAS data allows the model to account for both spatial and 
temporal variations in hydrological conditions, which is crucial for making informed decisions in agricultural 
water management.

The combined application of these two datasets not only enhances the model’s predictive accuracy but also 
provides robust scientific support for agricultural water resource management. By integrating MODIS and 
GLDAS data, the UCL model enables more rational water allocation and efficient irrigation practices. By delving 
into the insights provided by these datasets, researchers and policymakers can better understand and respond to 
the impacts of global changes on agricultural water resources.

Experimental environment
Our experimental environment consisted of the following hardware and software configurations:

• Hardware: The experiments were conducted on a system equipped with an Intel Xeon E5-2680 v4 CPU, an 
NVIDIA Tesla V100 GPU with 32GB memory, 256GB DDR4 RAM, and a 2TB SSD for storage.

• Software: The software environment included Ubuntu 20.04 LTS as the operating system, Python 3.8 as 
the programming language, and TensorFlow 2.4 as the primary deep learning framework. Additionally, we 
utilized libraries such as NumPy, pandas, Matplotlib, and scikit-learn for data processing and model train-
ing.These configurations ensured efficient handling and analysis of large remote sensing datasets and the 
effective training and evaluation of deep learning models.

Experimental details
Step1: Data preprocessing

• Data cleaning: in this study, data cleaning is a crucial step to ensure the input of high-quality data into the 
UCL model. Initially, for the MODIS dataset, missing values, especially those caused by cloud cover, are 
addressed through linear interpolation. This method takes advantage of the continuity in the time series by 
estimating the missing values based on the pixel values at the time points before and after the gap. For the 
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GLDAS dataset, which generally has more continuous data, we opt to use the average values from adjacent 
time points for imputation, maintaining consistency and continuity in the dataset. Additionally, we have rig-
orously handled outliers within the datasets. By setting thresholds, we identify and address irregular values, 
such as anomalously high temperatures or low humidity levels. Outliers are replaced using the median of the 
neighboring normal values, ensuring that the dataset remains robust and reliable.

• Data standardization: all numerical features, such as surface temperature, vegetation index, and soil moisture, 
are processed using Min-Max normalization, scaling the data to a range from 0 to 1. This treatment helps to 
accelerate the convergence of neural networks and prevents issues such as vanishing or exploding gradients.

• Building time series data: for each prediction target, we construct feature sets based on a time window (every 
5 days), each window including historical data from the past 10 days. This approach captures both long-term 
and short-term environmental changes, providing sufficient temporal information for the ConvLSTM layers. 
Data within the time window is aggregated by calculating the average value at each time point, which reduces 
the computational load on the model.

• Data splitting: the dataset is divided into training, validation, and test sets at a ratio of 70%, 15%, and 15% 
respectively. This split ensures that there is sufficient data for the model to learn during the training process, 
while also reserving independent data for performance validation and final testing. To avoid temporal data 
leakage, it is ensured that the data points in the test set occur after those in the training and validation sets.

• Experimental Region Description: The Central Valley of California is one of the most productive agricultural 
regions in the United States. This region is characterized by a Mediterranean climate with hot, dry summers 
and mild, wet winters. Major crops include fruits, vegetables, nuts, and cotton, with extensive use of irri-
gation systems. The availability of comprehensive remote sensing data from NASA Earthdata and detailed 
agricultural water use records from the USDA make this region an ideal candidate for our study.Step2: Model 
training

• 
• Model architecture design: the design of the UNet portion includes a four-layer encoder and decoder struc-

ture. Each encoder layer is equipped with two convolutional layers and one max pooling layer, which helps 
extract spatial features and reduce the spatial dimensionality of the features, increasing the model’s capacity 
for abstraction.For the MODIS dataset, the input size is [H ×W × 2], where H and W represent the image di-
mensions, and 2 represents the feature channels (surface temperature and vegetation index). For the GLDAS 
dataset, the input size is [H ×W ×N ], where N is the number of hydrological parameters. The decoder part 
gradually restores the details and dimensions of the image through upsampling and convolution operations. 
Each decoder layer also contains two convolutional layers and one upsampling layer to enhance the resolution 
of the feature maps. The output from the final encoder layer has a size of [H ′ ×W ′ ×D], where H ′ and W ′ are 
the reduced spatial dimensions and D is the feature depth. These are then passed into the ConvLSTM layers 
with input size [T ×H ′ ×W ′ ×D], where T represents the time steps. To capture the dynamics related to 
temporal changes, the network incorporates two layers of ConvLSTM, each with 64 hidden units. This config-
uration allows the model to effectively learn complex dependencies within the time series data.

• Model inputs and outputs: when the UCL model is applied to the MODIS dataset, the inputs consist of surface 
temperature and vegetation indices. These parameters are critical for assessing crop health and evapotranspi-
ration rates, which are directly related to the water demand of crops. The output of the model in this case is the 
predicted agricultural water demand, which indicates the amount of irrigation required based on the analyzed 
environmental conditions. For the GLDAS dataset, the inputs include soil moisture levels, precipitation, and 
other hydrological parameters. These inputs provide comprehensive information on water availability in the 
soil, which is essential for determining the irrigation needs of crops. The output when using GLDAS data is 
the prediction of soil moisture levels and the corresponding irrigation requirements, helping to ensure that 
crops receive the necessary water for optimal growth. This clear distinction of inputs and outputs for each 
dataset ensures that the UCL model is properly tailored to the specific characteristics and needs of the data, 
enhancing the model’s accuracy in predicting agricultural water requirements.

• Training Parameters: We have opted for a relatively low learning rate of 0.001 to stabilize the optimization 
process, and have chosen the Adam optimizer, which integrates the advantages of momentum and adaptive 
learning rates, making it suitable for handling large-scale parameter models. The batch size is set at 32 to 
balance computational efficiency and memory usage, ensuring effective gradient calculations while avoiding 
memory overflow. These configurations help the model more accurately predict agricultural water require-
ments.

• Model training and validation process: the dataset was initially split into 70% for training and validation 
and 30% as an independent test set. Within the 70% training and validation data, we implemented 5-fold 
cross-validation to assess the model’s generalizability and robustness. This approach ensured that different 
subsets of the training data took turns serving as the validation set, allowing the model to exhibit stable 
performance under various data conditions. The test set was kept independent and was not involved in the 
cross-validation process, ensuring that the final model evaluation was based on data unseen during the train-
ing and validation phases. This process meticulously optimized the model, ensuring its effectiveness in practi-
cal applications.Step3: Model evaluation: the effectiveness of the proposed model was evaluated using several 
performance metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Coefficient 
of Determination (R2), and Mean Absolute Percentage Error (MAPE). These metrics were chosen to provide 
a comprehensive assessment of the model’s accuracy and reliability in predicting agricultural water demand.

 
RMSE =

√√√√1

n

n∑
i=1

(yi − ŷi)2  (12)
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MAE =

1

n

n∑
i=1

|yi − ŷi|  (13)

 
R2 =1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

 (14)

 
MAPE =

100%

n

n∑
i=1

∣∣∣∣
yi − ŷi
yi

∣∣∣∣  (15)

where n is the number of observations, yi is the actual value, ŷi is the predicted value, and ȳ is the mean of the 
actual values.

These metrics collectively provide a comprehensive evaluation of the model’s performance in predicting 
agricultural water demand, ensuring both accuracy and reliability in different aspects of the predictions.

Data availibility
The data and materials used in this study are not currently available for public access. Interested parties may 
request access to the data by contacting the corresponding author.
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