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Colorado River water supply is predictable
on multi-year timescales owing to long-term
ocean memory
Yoshimitsu Chikamoto 1,2✉, S.-Y. Simon Wang 1,2, Matt Yost1, Larissa Yocom3 & Robert R. Gillies1,2

Skillful multi-year climate forecasts provide crucial information for decision-makers and

resource managers to mitigate water scarcity, yet such forecasts remain challenging due to

unpredictable weather noise and the lack of dynamical model capability. Here we demon-

strate that the annual water supply of the Colorado River is predictable up to several years in

advance by a drift-free decadal climate prediction system using a fully coupled climate model.

Observational analyses and model experiments show that prolonged shortages of water

supply in the Colorado River are significantly linked to sea surface temperature precursors

including tropical Pacific cooling, North Pacific warming, and southern tropical Atlantic

warming. In the Colorado River basin, the water deficits can reduce crop yield and increase

wildfire potential. Thus, a multi-year prediction of severe water shortages in the Colorado

River basin could be useful as an early indicator of subsequent agricultural loss and

wildfire risk.

https://doi.org/10.1038/s43247-020-00027-0 OPEN

1 Department of Plants, Soils and Climate, Utah State University, 4820 Old Main Hill, Logan, Utah, USA. 2 Utah Climate Center, Utah State University, Logan,
Utah, USA. 3 Department of Wildland Resources, Utah State University, Logan, Utah, USA. ✉email: yoshi.chikamoto@usu.edu

COMMUNICATIONS EARTH & ENVIRONMENT |            (2020) 1:26 | https://doi.org/10.1038/s43247-020-00027-0 | www.nature.com/commsenv 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-020-00027-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-020-00027-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-020-00027-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-020-00027-0&domain=pdf
http://orcid.org/0000-0003-1001-5188
http://orcid.org/0000-0003-1001-5188
http://orcid.org/0000-0003-1001-5188
http://orcid.org/0000-0003-1001-5188
http://orcid.org/0000-0003-1001-5188
http://orcid.org/0000-0003-2009-2275
http://orcid.org/0000-0003-2009-2275
http://orcid.org/0000-0003-2009-2275
http://orcid.org/0000-0003-2009-2275
http://orcid.org/0000-0003-2009-2275
mailto:yoshi.chikamoto@usu.edu
www.nature.com/commsenv
www.nature.com/commsenv


The Colorado River is the most important water resource in
the semi-arid western United States (U.S.). Demand for its
water has increased continuously for the past 60 years but

its water supply is facing an unsustainable future due to declining
precipitation and prolonged drought events1–3. Prolonged water
shortages in the Colorado River can cause serious damages to a
wide range of sectors, including agriculture, forestry, energy, food
security, drinking water, and tourism4,5. High-impact drought
events in the Colorado River basin during 2000–2016 severely
stressed regional water supply and strained reservoir operations,
recreation, and ecological services1,3. To help managers and
policy-makers cope with drought-induced water shortages cou-
pled with ever-increasing demand, it is crucial to develop multi-
year drought predictions for safeguarding and maintaining
industrial and societal wellbeing.

Presently, U.S. operational drought forecasts primarily focus on
day-to-month outlooks, such as the short-term drought severity
indicator and the monthly drought outlook generated by the
Climate Prediction Center (CPC) and the National Drought
Mitigation Center of the National Oceanic and Atmospheric
Administration. These forecasts are severely limited by short-
term weather phenomena6, since unpredictable atmospheric
noise makes interannual-to-decadal climate prediction
challenging7,8. However, previous research has identified a pro-
minent “drought cycle” in the Intermountain West and the
southwest U.S., which was attributed to climate variability asso-
ciated with long-term ocean memory9–14. Besides ocean memory,
land systems (i.e., soils, groundwater, streamflow, vegetation, and
perennial snowpack) filter out the high-frequency precipitation
fluctuation and integrate atmospheric signals over space and
time15–19. These results lead to a hypothesis proposed herein that
skillful multi-year predictions of the Colorado River water supply
are possible by utilizing long-term ocean memory, its associated
atmospheric teleconnections, and the natural filtering effect in the
land system altogether. A similar concept has been applied to
develop seasonal drought forecasts based on El Niño Southern
Oscillation (ENSO) predictions20 and a statistical model for
multi-year water supply predictions21,22, yet its application to the
water supply forecast beyond seasonal timescales remains
unknown due to the signal-to-noise paradox7.

Here we demonstrate that interannual-to-decadal variability of
the Colorado River water supply is predictable for several years in
advance using a decadal climate prediction approach. Our
assessment is based on three experiments using the fully coupled
climate model Community Earth System Model (CESM; see
“Methods”): a historical and future emission scenario simulation
(the externally forced run), an ocean data assimilation run
(referred to as the ASSIM run), and a multi-year initialized pre-
diction experiment (the hindcast run). In the ASSIM run, we
assimilated the observation-based 3-dimensional ocean tem-
perature and salinity anomalies23 into the ocean component of
CESM, with prescribed natural and anthropogenic radiative for-
cings. As a result, the model-simulated atmosphere-land varia-
bility in the ASSIM run is indicative of the response to ocean
variability and external radiative forcings. We conducted the
ocean assimilation experiment for the period 1960–2015 with 10
ensemble members. To minimize the bias known as artificial
model drift during the simulation, an effective bias-adjustment
method was adopted and applied in the assimilation method24.
Predictability of Colorado River water supply and its sources are
determined by the externally forced run and the hindcast run.

Results
Reconstruction of Colorado River water supply. To detect water
shortages of the Colorado River, we used a historical record of

water supply in the Colorado River basin provided by the Bureau
of Reclamation1 (blue line in Fig. 1a). This Colorado River water
supply dataset was designed to develop adaptation and mitigation
strategies for water resource agencies and stakeholders through-
out the Colorado River basin. Its interannual-to-decadal varia-
bility mostly reflects the natural flow at Lees Ferry, Arizona, and
is assumed to be free of human water usage (e.g., irrigation)25.
This water supply record illustrates severe shortages in the years
1963, 1977, 1981, 1990, 2002, 2012, and 2013 (yellow shade in
Fig. 1a). These severe shortages correspond with agricultural
losses and high fire activity in the Colorado River basin, as
described later.

According to previous studies, the major fraction of Colorado
River streamflow variability arises from groundwater variability
through precipitation input as well as land processes of
infiltration, subsurface storage and transmission, and conver-
gence toward the channels17,26,27. Through these regional
processes, Colorado River streamflow is considered to have a
large spatial footprint of hydroclimate conditions in the
Intermountain West17. To reveal regional climatic control of
the Colorado River water supply, we made correlation maps of
precipitation and total soil water (i.e., the sum of soil water in all
soil layers) as observation-based and model-simulated anomalies
with the observed Colorado River water supply (Fig. 1b–e). While
the correlation between the Colorado River water supply and
annual mean precipitation variability is high, we find more
significant correlations of water supply with soil water anomalies
across the western U.S. (Fig. 1b, d). The ASSIM run also
demonstrates that the Colorado River water supply positively
correlates with soil water anomalies around Utah, Colorado, and
New Mexico (Fig. 1e), albeit with somewhat distorted spatial
patterns of precipitation and soil water anomalies compared to
the observation. By taking the regional average over these highly
correlated soil water anomalies (black boxes in Fig. 1b, e), we
reconstruct the Colorado River water supply using the National
Centers for Environmental Prediction CPC reanalysis and the
ASSIM run (black lines in Fig. 1a). This reconstructed water
supply shows a close agreement with the observed temporal
variation of the Colorado River water supply. This result supports
our hypothesis that the Colorado River water supply is closely
linked to soil water variability in the Intermountain West.

Atmospheric weather disturbances still generate unpredictable
high-frequency noise, inhibiting precipitation predictability, yet
such high-frequency components of precipitation variability are
mostly filtered out through the land hydrological processes in the
Intermountain West11,15. Because of this land filtering effect, annual
soil water anomalies reflect precipitation anomalies averaged for
several years (Supplementary Fig. 1) that link with long-term ocean
memories. Consequently, we reconstructed the Colorado River
water supply from the areal average of soil water anomalies
associated with interannual-to-decadal ocean variability in the
ASSIM run. The 10-member ensemble mean of ASSIM runs
demonstrates skill in capturing many major historical shortages of
the Colorado River water supply (Fig. 1a), even though it did not
include any atmospheric or land observations. The correlation
coefficient between the observed and the model reconstructed
Colorado River water supply was higher when we applied a 3-year
running mean filter to highlight the low-frequency climate
variability (correlation coefficients are 0.43 for annual and 0.60
for 3-year means, respectively). Our analysis suggests that the
Colorado River water supply is potentially predictable through
“perfect knowledge” of ocean conditions.

Predictability of Colorado River water supply. Next, we
examined the dynamical retrospective forecasts for the period
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1960–2015, which was initialized annually on January 1st based
on the ASSIM run (referred to as the hindcast run; see Methods).
This hindcast experiment consists of 10-year-long predictions
with 10 ensemble members for each initialized run. The ensemble
mean of the hindcast runs for the reconstructed Colorado River
water supply and the corresponding ensemble spread aligned well
with the CPC reanalysis and the ASSIM run for 1-year and even
2-year lead times (Fig. 2a, c). The predictive skills measured by

the anomaly correlation coefficient (ACC) and the root-mean-
square error (RMSE) in our hindcast run outperform those in the
externally forced run and persistent forecast (see “Methods”), up
to the lead time of 48 months (Fig. 2b, d). These higher skills in
the hindcast run indicate that ocean initialization is crucial for
skillful forecasts of the Colorado River water supply on
interannual-to-decadal timescales whereas atmospheric initi-
alization can improve land hydrological predictability on seasonal

Fig. 1 Observed and reconstructed Colorado River water supply. a Annual mean time series of Colorado River water supply (blue) and its reconstructions
by CPC soil moisture reanalysis (black broken) and the ensemble mean of 10-member ASSIM runs (black solid). The reconstructions of the Colorado River
water supply are obtained by area averaged soil moisture anomalies in CPC reanalysis (33°N–43°N, 119°W–103°W) and ASSIM runs (black boxes in d, e).
Years with prominent water supply shortages are highlighted with yellow shading (1963, 1977, 1981, 1990, 2002, 2012, and 2013). Correlation maps of b, c
precipitation and e, f soil moisture anomalies in the observation-based estimate (left) and the ASSIM run (right) against the Colorado River water supply
for 1960–2015. Red line and yellow mark in b, d indicate geographical locations of Colorado River and Lees Ferry, respectively. Correlation coefficients of
0.28, 0.33, 0.45, and 0.53 correspond to the statistical significance at 90%, 95%, 99%, and 99.9% levels with 36 degrees of freedom on the basis of two-
sided Student’s t-tests and an equivalent sampling size of the Colorado River water supply. Anomalies are defined as deviations from climatological means
and linear trends are removed in each grid.
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timescales28. As a result, the hindcast run demonstrates skill in
predicting the Colorado River water supply for 2 years in advance
(Fig. 2b, d). Furthermore, we find higher predictive skill by
measuring the hindcast run against the model reconstruction of
the ASSIM run (i.e., red dotted lines in Fig. 2b, d) compared to
either the observation-based products of CPC reanalysis or the
observed Colorado River water supply. Because of deficiencies in
current climate models simulating observed land hydrology, these
results suggest that enhanced predictive skill could be achieved by
improving model performance in simulating soil water variability.
The dynamical prediction presented here supports earlier statis-
tical predictions of Colorado River water supply years
ahead21,22,29,30.

Our prediction system suggests that the changes in large-scale
atmospheric circulations link with water shortages of the
Colorado River. During extreme water shortages, observations
show drier soil water conditions around the Intermountain West
under atmospheric high-pressure anomalies with a North Pacific
connection (Fig. 3g). The drier soil patterns appear one year

before the water shortages and are limited to the eastern side of
the Intermountain West (Fig. 3d). We also see higher and lower
atmospheric pressure anomalies in the North Pacific 1 and 2
years before the shortages (Fig. 3a, d), implying that the water
shortages are induced by an atmospheric teleconnection, such as
the Pacific North American (PNA) pattern. However, the
statistical significance of these anomalies is obscured by high-
frequency atmospheric noise. These observed PNA-like atmo-
spheric patterns and drier soil conditions in the Intermountain
West are well captured in the ASSIM run 1 and 2 years before
water shortages (center panels in Fig. 3). The 1-year prediction in
the hindcast run also captures these PNA-like atmospheric
teleconnection patterns and dry soil water conditions (right
panels in Fig. 3). These results strongly support the hypothesis
that the annual Colorado River water supply is predictable by
utilizing ocean memory and the land filtering effect.

It is worth noting discrepancies between the observations and
the model simulations. As shown in Fig. 3g, e, the ASSIM run
exhibits the timing of water shortages a year too early. In addition

Fig. 2 Predictability of reconstructed Colorado River water supply. Time series of reconstructed Colorado River water supply and the hindcast runs for a
1–12 and c 13–24 months lead time. Solid and broken black lines indicate reconstructions by the ASSIM run and the CPC reanalysis, respectively. Red circles
and bars denote ensemble mean and spread (±1 standard deviation) of 10-member hindcast run initialized on 1st January, every year. Blue lines and shading
denote ensemble mean and spread (±1 standard deviation) of the 10-member externally forced run. Anomalies are defined as deviations from
climatological means and linear trends are removed in each grid. Time series are normalized by one standard deviation based on the CPC reanalysis and
the ocean data assimilation run. b, d Predictive skills of reconstructed Colorado River water supply in hindcast run (red solid), externally forced run (blue),
and persistence (black) measured by anomaly correlation coefficient (ACC) and root-mean-square-errors (RMSEs) against the CPC reanalysis (i.e., black
dashed lines in a, c) based on 50 initialized cases (1961–2010). A 12-month running mean filter is applied to linearly detrended anomalies. Red stars in b, d
denote predictive skills in the hindcast run against the observed Colorado River water supply (i.e., blue line in Fig. 1a). Red dotted lines in b, d correspond to
the predictive skills in the hindcast run against the ocean data assimilation run (i.e., black solid lines in a, c), which indicates the upper limit of predictability
in the current model (i.e., potential predictability). In the persistent predictions, the observed anomalies in initial years (i.e., time average of anomalies for
0–11 months before the start time of prediction) are maintained during the prediction lead time. Black broken lines in b, d denote a correlation coefficient of
0.235 with the statistical significance at 95% level with 50 degrees of freedom using one-side Student’s t-test and one standard deviation.
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Fig. 3 Atmospheric teleconnections associated with water shortages of the Colorado River. Composite maps of annual mean soil water (shaded) and
500 hPa geopotential height anomalies (contours) in observations (left), the ASSIM run (center), and the 1–12 months hindcast run (right) at (a–c) 2 years
before, d–f 1 year before, and g–i during waters shortage in the Colorado River basin (i.e., yellow shading in Fig. 1). Anomalies are defined as deviations from
climatological means and linear trends are removed in each grid. Contour intervals are ±3, ±6, ±9, ±12, ±15, ±18, and ±21 hPa. Zero contours are omitted and
negative values are dashed. Light and dark pinks (greens) indicate the statistical significance at the 90% and 95 % levels with two-side Student’s t-test for
soil water (geopotential height) anomalies.
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to this earlier timing, the centers of action in the PNA-like
atmospheric teleconnection are slightly shifted in the ASSIM run
compared to the observations (Fig. 3). It is also unclear what the
model capability is in simulating evapotranspiration that plays an
important role in the land filtering effect. Because of these model
deficiencies, we selected a different area for reconstructing the
Colorado River water supply in the ASSIM run compared to the
CPC reanalysis (boxes in Fig. 1d, e). These model deficiencies
may reduce skill in predicting observed Colorado River water
supply in our hindcast run compared to the skill against the
ASSIM run (start marks and dotted lines in Fig. 2b, d). Further
enhancement of predictive skills could be achieved by improving
model-simulated land hydrological processes and using finer
model spatial resolution.

Ocean precursors for water shortage. Given the demonstrated
ocean influences on multi-year predictability in the Colorado
River water supply, in which drought years in the ASSIM run are
linked to interannual-to-decadal ocean variability, we extract 7
predictable years when the Colorado River water supply is more
than −0.5 standard deviations from the mean in the observed
dataset and the reconstruction of ASSIM run (Supplementary
Fig. 2): 1963, 1976, 2000, 2001, 2002, 2012, and 2013. The
composite maps associated with these years exhibit the PNA-like
atmospheric teleconnection pattern 1–3 years before the mature
phase (Fig. 4). Significant changes in SST are also noticeable, such
as a La Niña-like SST pattern in the tropical Pacific 1–2 years
before, a warmer SST in the Kuroshio-Oyashio extension region
1–3 years before, and a warmer SST in the southern tropical
Atlantic 2–3 years before the mature phase in both the observa-
tions and the ASSIM run (Fig. 4). We consider these SST
anomalies precursors for severe water shortages of the Colorado
River.

To evaluate ocean impacts on water shortage, we develop a
statistical prediction based on the three SST precursors for the
Colorado River water supply (Fig. 5). To capture the lower-
frequency component, we apply a 2-year running mean to the
area-averaged SST anomalies. Lead-lag relationships reveal that
the observed Colorado River water supply correlates with SST
precursors in the tropical Pacific at 1–2 years lag, the North
Pacific at 2–3 years lag, and the southern tropical Atlantic at 3–4
years lag (Fig. 5b). A multiple regression analysis using these
inputs indicates that this statistical prediction model can explain
~38% of the variance in Colorado River water supply (correlation
coefficient R= 0.62; Fig. 5a). Specifically, prominent negative
values of this statistical model (less than −1.0 standard deviation)
always accompany drier anomalies of the Colorado River water
supply. In other words, by monitoring these SST precursors, we
can detect emergence of water shortage in the Colorado River
basin. The contributions from each precursor correspond to 7%
from the tropical Pacific, 34% from the North Pacific, and 59%
from the southern tropical Atlantic (see Methods). According to
this estimate and the different lead times of SST precursors, it
may be possible to provide an early indicator of water shortage at
least two years before a drought event by utilizing the North
Pacific and the southern tropical Atlantic SST precursors. Further
improving predictive skills could include developing a more
sophisticated statistical method using three ocean precursors as
well as combining the dynamical predictions of these ocean
precursors with the statistically-based prediction model.

Drought impacts on agriculture and wildfire. The ocean-
induced large-scale climatic anomalies modulating the Colorado
River water supply also affect crops and natural ecosystems. Even
though advances in agricultural technology and improved

management practices have led to a remarkable increase in
annual crop yields (Fig. 6a, since the early 1960s31), crop pro-
duction remains vulnerable from prolonged drought events.
During severe water shortages (yellow shade in Figs. 1 and 6), we
see large reductions in annual crop yields for most major crops
(alfalfa, wheat, corn silage, and barley; Fig. 6a) in the Inter-
mountain West (encompassing Colorado, Nevada, Utah,
Wyoming, and Idaho). Specifically, small grains (wheat and
barley) are more vulnerable to drought stress than alfalfa and
corn silage (Fig. 6a and Supplementary Table 1). The average
across linearly detrended and normalized crop yields further
highlight the effect of these prolonged droughts (Fig. 6b and
Supplementary Fig. 3). Interannual-to-decadal variability in the
averaged crop yield significantly correlates with the Colorado
River water supply (R= 0.59). Consistent with this positive cor-
relation, we can see a shift in the probability distribution toward

Fig. 6 Interannual-to-decadal variability of agriculture production and
mean large wildfire size. Annual mean time series of a crop yields in the
Mountain West (Colorado, Nevada, Utah, Wyoming, and Idaho), b average
of normalized and detrended crop yields in the Mountain West (green;
see Supplementary Methods), and c mean large-fire size in Colorado,
Nevada, Utah, Wyoming, Idaho, Oregon, California, Arizona, and New
Mexico. The observed Colorado River water supply and its reconstruction
in the assimilation run in Fig. 1a are replotted in b, c as well (blue and black
lines). Years with prominent water supply shortages are highlighted by
yellow shading (1963, 1977, 1981, 1990, 2002, 2012, and 2013). Annual
crop yields are represented by a percentage relative to the values in 1960.
The crop yield in b was linearly detrended in each state, each crop,
averaged across five states, normalized by one standard deviation, and then
we took the ensemble mean of all five crops (see Supplementary Fig. 3).
Annual mean fire size is calculated by fire burned area divided by the
number of large fire events per year.
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reductions in crop yield during shortages of the Colorado River
water supply (Fig. 7a).

Severe water shortages also influence the occurrence of large
wildfires5,32 throughout the West (Fig. 6c; including Colorado,

Nevada, Utah, Wyoming, Idaho, Oregon, California, Arizona,
and New Mexico). Whereas interannual-to-decadal wildfire
variability demonstrates complex behavior by interacting with
soil water and vegetation15, drought is one of the main factors

Fig. 4 Predictable atmosphere-ocean anomalies associated with water shortages of the Colorado River. Composite maps of annual mean SST (shaded)
and 500 hPa geopotential height anomalies (contours) in observations (left) and the ASSIM run (right) during drought years in the model (i.e., 1963, 1976,
2000, 2001, 2002, 2012, and 2013; see Supplementary Fig. 2) at a, b −3, c, d −2, e, f −1, and g, h 0 year lags. Anomalies are defined as deviations from
climatological means and linear trends are removed in each grid. Contour intervals are ±3, ±6, ±9, ±12, ±15, ±18, and ±21 hPa. Zero contours are omitted and
negative values are dashed. Pinks (greens) indicate the statistical significance at the 90% levels with two-side Student’s t-test for SST (geopotential height)
anomalies.
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linked to fire occurrence in the West33. We found that
interannual-to-decadal variability of mean fire size positively
correlates with the Colorado River water supply (R= 0.47,
Fig. 6c). Large fire events occurred during the severe water
shortages in 1990, 2002, 2012, and 2013, which is also highlighted
by an increase in the probability distribution of large fires
(Fig. 7b). Since water shortages of the Colorado River are tightly
linked with drier soil conditions across the basin (Figs. 1d and
7c), our multi-year predictions of Colorado River water supply
can apply to risk assessments of crop yield reduction and large
fire occurrence.

Discussion
Using the decadal climate prediction system demonstrated here,
we found that the Colorado River water supply is potentially
predictable by utilizing long-term ocean memory and the land
filtering effect. However, sources of long-term ocean memory
remain unclear. Many previous studies have pointed to the
linkage of drought conditions in the U.S. with interannual-to-
decadal sea surface and climate variability in the tropical and
North Pacific, such as ENSO34, Pacific Decadal Oscillation35,
Interdecadal Pacific Oscillation36, and Pacific Quasi-decadal
Oscillation11,14. The SST anomalies associated with these

phenomena serve as an atmospheric heat source and so, induce a
PNA-like atmospheric response through the atmospheric Rossby
wave propagation. This PNA-like atmospheric pattern can persist
as a response to lower-frequency ocean forcing while modulating
moisture transport from the ocean to the Colorado River basin.
Recent studies have also introduced the concept of inter-basin
climate interactions37,38, in which the Atlantic Ocean can mod-
ulate Pacific climate variability39–41. The demonstrated predic-
tions of the Colorado River water supply are in good agreement
with this concept. Whereas some previous studies have pointed
out the relationship between U.S. drought conditions and the
North Atlantic SST anomalies associated with the Atlantic Mul-
tidecadal Oscillation22, our analysis detects a more important role
of the southern tropical Atlantic.

The prediction of the Colorado River water supply obtained
here has implications not only for drought management but also
for proactive management practices that might be applied to
mitigate crop yield reductions as well as wildfire risk (Figs. 1 and
6). Our results indicated that multi-year drought conditions in
the Intermountain West are remotely linked to three ocean pre-
cursors, including the La Niña-like SST cooling in the tropical
Pacific 1–2 years before, the warmer SST in the Kuroshio-
Oyashio extension region 2–3 years before, and the warmer SST

Fig. 5 SST precursors of Colorado River water supply shortages. a Timeseries of the normalized Colorado River water supply, showing observed (bar)
and predicted based on the multiple regression of three SST precursors (black line; see “Methods”). b Lead-lag correlations of the observed Colorado River
water supply with the three SST precursors (see “Methods”) averaged over the tropical Pacific (red), the North Pacific (blue), and the southern tropical
Atlantic (black). Positive (negative) lead times indicate that the Colorado River water supply leads (lags) SST anomalies. c Composite map of observed SST
anomalies at 2–3 years before the seven shortage years (i.e., 1963, 1976, 2000, 2001, 2002, 2012, and 2013; see Supplementary Fig. 2). Red, blue, and
black boxes correspond to the area averaged regions in the tropical Pacific, North Pacific, and the southern tropical Atlantic, respectively. Pinks indicate the
statistical significance at the 90% levels with two-sided Student’s t-tests for SST anomalies. SST anomalies are linearly detrended at each grid point from
1960 to 2015.
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in the southern tropical Atlantic 3–4 years before the mature
stage of Colorado River water shortages. By monitoring these
ocean precursors, we can develop a trustworthy outlook for
heightened drought threat in the upcoming year. The lead time
could help water managers and stakeholders establish mitigation
strategies and proactive management plans, such as deliveries,
allocations, conservation, and efficient usages of operational water
supply on an annual basis. The long-range drought outlook is also
applicable to inform farmers, ranchers, forest and range man-
agers, energy supply potential, and fire managers about the
potential for upcoming water scarcity and subsequent risks. This

approach of using optimized model-simulated soil water varia-
bility to predict multi-year water supplies of the Colorado River
basin could also be used for other major river basins in the
western U.S. and may have other implications for energy supply
potential in large hydropower plants or socioeconomic risks.

Methods
Observation data. Annual Colorado River water supply was obtained from a
comprehensive Colorado River basin Water Supply and Demand Study by the
Bureau of Reclamation1. Annual crop yield for five dominant crops (in terms of
land area) in the Mountain West (alfalfa, spring wheat, winter wheat, corn silage,
and barley) for 1960–2015 were obtained from agricultural census and survey data
collected by United States Department of Agriculture-National Agricultural Sta-
tistics Service42. State-level mean yields for Colorado, Nevada, Utah, Wyoming,
and Idaho were averaged together by year. Annual mean wildfire size for
1984–2014 was calculated by dividing wildfire area burned by wildfire occurrences
in Colorado, Nevada, Utah, Wyoming, Idaho, Oregon, California, Arizona, and
New Mexico. These observational wildfire datasets were derived from the Mon-
itoring Trends in Burn Severity database43, which includes fires >405 ha in the
western US. Climate datasets for 1960–2018, such as precipitation, soil water, sea
surface temperature, and geopotential height at 500 hPa, were derived from gridded
datasets of the Global Precipitation Climatology Centre (GPCC) combined full
version 7 and version 4 monitoring data products44, the National Centers for
Environmental Prediction Climate Prediction Center (CPC) reanalysis product45,
Characteristics of Global Sea Surface Temperature Analysis Data version 246, and
Japanese 55-year reanalysis datasets47, respectively.

Model experiment. The fully coupled climate model used here is a lower-
resolution version of the Community Earth System Model (CESM) version 1.0.648.
The atmospheric and land models correspond to a horizontal resolution of
T31 spectral grid (approximately 3.75° horizontal resolution) with 26 hybrid sigma/
pressure coordinate levels in the atmosphere, 10 soil layers, and an aquifer water
layer on land. The land component is the Community Land Model version 4
(CLM4), which includes a carbon-nitrogen biogeochemical cycle, a simple
groundwater model, and a wildfire scheme49. The ocean and sea-ice models use a
curvature grid with a displaced North Pole (~3° horizontal grid but 1° latitude grid
near the equator) with 60 vertical levels in the ocean. This computationally efficient
model resolution enables the running of a large number of model integrations for
the decadal climate prediction experiment. No flux correction is applied in
exchanging heat, water, and momentum fluxes between the atmosphere and the
ocean. Details of the basic model performance in this configuration can be found in
previous studies15,24,48.

Using CESM, we conducted three experiments based on the decadal climate
prediction protocol: an externally forced run, an ocean data assimilation run, and a
series of multi-year hindcast runs. These experiments are based on a drift-free
decadal climate prediction system24. All experiments were conducted with a 10-
member ensemble and use the same radiative forcings (i.e., greenhouse gas and
aerosol concentrations, solar cycle variations, and major volcanic eruptions) as the
historical record before 2005 and the IPCC RCP4.5 future emissions scenario after
200550. In the externally forced run, the model was prescribed by natural and
anthropogenic radiative forcings for the period 1850–2030. Initial conditions for
the externally forced run were obtained from 10 random years of the pre-industrial
control simulation using a constant external forcing for the year 1850. From this
externally forced run, we obtained 10-member initial conditions on 1st January,
1958 and assimilated the observation-based 3-dimensional ocean temperature and
salinity anomalies into the ocean component of CESM for the period 1958–2015
(the ASSIM run). Based on the initial conditions obtained from the ASSIM run, we
conducted a series of 10-year-long hindcast/forecast experiments from 1960 to
2015 every year.

To minimize artificial model climate drift during prediction, we assimilated the
observed internal variability (Yint) while maintaining the model simulated states in
the climatology (Xclm) and the externally forced signal (Xext) (i.e., the bias-adjusted
observations is equal to Yint+ Xext+ Xclm), where Y is the observation, X is the
ensemble mean of the externally forced run, and subscripts int, ext, and clm are
internal variability, externally forced signal, and climatology, respectively. As a
result of applying the balanced ocean conditions to the model-simulated
climatological and externally forced signals, our hindcast run shows only little drift
and no initialization shocks. This new drift-free prediction system has exhibited
strong multi-year predictive skill for decadal climate variations of the Atlantic
meridional overturning circulation, North Pacific decadal variability, and drought-
fire variability in southwestern North America9,24.

Predictive skills. Predictive skills in the hindcast run, the externally forced run,
and the persistent forecast were measured based on 50 initial cases (i.e., every year
from 1961 to 2010). The hindcast run is 10 years long and uses 10-member
ensemble predictions for every initial case. To assess the impact of ocean initi-
alization, we converted the 10-member externally forced run into the same format
as the hindcast run. In these runs, anomalies were calculated by removing the

Fig. 7 Impact of Colorado River water shortages on agriculture and
wildfire. Probability distributions of a the normalized and linearly detrended
annual crop yields in the Mountain West (barley, corn silage, spring wheat,
winter wheat, and alfalfa in Colorado, Nevada, Utah, Wyoming, and Idaho),
b mean fire size in the West (Colorado, Nevada, Utah, Wyoming, Idaho,
Oregon, California, Arizona, and New Mexico), and c the linearly detrended
soil water anomalies in the Colorado River basin during all years (black) and
the years of Colorado River water supply shortages (red). Maximum
sample sizes for all years correspond to 1400 (56 years × 5 crops ×
5 states) for crop yield, 279 (31 years × 9 states) for fire size, and (56
years × 639 grid points) for soil water although actual sample sizes for crop
yield and fire size (n) are smaller than these maximum sizes due to missing
values. Seven years of Colorado River water supply shortage are shown in
yellow shading in Fig. 1. The horizontal axis of mean fire size b corresponds
to the log10 scale.
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climatology mean and linear trends for 50 years as a function of lead time. Their
anomalies in Fig. 4 were normalized based on the standard deviation of the ASSIM
run and were applied by a 12-month running mean filter. We labeled the lead time
based on the last month of the averaged period (i.e., the lead time labeled
“12 months” corresponds to the average of 1–12 months lead time), which means
that we do not have values for lead times labeled 1–11 in the hindcast run. In the
persistent forecasts, initial anomalies obtained from the CPC reanalysis persist
during the forecast period.

A statistical model based on the SST precursors. We developed the statistical
model using multiple regression of three SST precursors: SST anomalies averaged
over the tropical Pacific (15°S–15°N, 150°W–120°W), the North Pacific (25°S–35°N,
130°E–180°), and the southern tropical Atlantic (20°S–5°N, 30°W–20°E). Anomalies
are defined as deviations from the climatological mean and the linear trends are
removed at each grid point. These area averaged SST anomalies are normalized
by one standard deviation in each region (Supplementary Fig. 4). Based on the lead-
lag correlation, we selected lead times of 1–2 years lag in the tropical Pacific (TP),
2–3 years lag in the North Pacific (NP), and 3–4 years lag in the southern
tropical Atlantic (TA). The area in the tropical Pacific SST precursor is optimized
based on SST anomaly pattern at a 1-year lag (Fig. 4e, f). Correlation coefficients
between three SST precursors are summarized in Supplementary Table 2. A mul-
tiple regression analysis for these precursors with the observed Colorado River
water supply provides the prediction (y) as follow: y= 0.074 × TP−0.337 × NP
−0.589 × TA.

Data availability
The Colorado River water supply data were provided by Dr. Lawrence Hipps at Utah
State University (lawrence.hipps@usu.edu) and James Prairie at the Bureau of
Reclamation (jprairie@usbr.gov). Observed sea surface temperature dataset and
reanalysis product of geopotential height were provided by Japan Meteorological Agency
at http://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst/cobe-sst.html and https://jra.
kishou.go.jp/JRA-55/index_en.html. CPC soil water data were provided by the NOAA/
OAR/ESRL PSL, Boulder, Colorado, USA, at https://www.psl.noaa.gov/data/gridded/
data.cpcsoil.html. Other datasets generated in this study are available at https://climate.
usu.edu/people/yoshi/data/2020-CoRiv_data/data.html. All datasets are the NetCDF
format. The datasets generated in this study and figures are also available on request from
the corresponding author.

Code availability
We used the NCAR Command Language version 6.5.051 to analyze observed and model-
simulated data and draw figures. The source code of the fully coupled climate model
CESM 1.0.6 is distributed by the National Center for Atmospheric Research (http://www.
cesm.ucar.edu/models/cesm1.0/). Ocean data assimilation and visualization codes are
available on request from the corresponding author.
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