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ABSTRACT
Interfacial  solar evaporation (ISE) is a promising technology to relieve worldwide freshwater shortages owing to its high
energy  conversion  efficiency  and  environmentally  sustainable  potential.  So  far,  many  innovative  materials  and
evaporators  have  been  proposed  and  applied  in  ISE  to  enable  highly  controllable  and  efficient  solar-to-thermal  energy
conversion. With rational design, solar evaporators can achieve excellent energy management for lowering energy loss,
harvesting  extra  energy,  and  efficiently  utilizing  energy  in  the  system to  improve  freshwater  production.  Beyond that,  a
strategy of reducing water vaporization enthalpy by introducing molecular engineering for water-state regulation has also
been demonstrated as an effective approach to boost ISE. Based on these, this article discusses the energy nexus in two-
dimensional (2D) and three-dimensional (3D) evaporators separately and reviews the strategies for design and fabrication
of highly efficient ISE systems. The summarized work offers significant perspectives for guiding the future design of ISE
systems with efficient energy management, which pave pathways for practical applications.
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 1    Introduction
Freshwater  scarcity  has  become  one  of  the  most  critical  global
issues  endangering  the  long-term sustainability  of  human society
[1–6]. To mitigate this problem, in recent years, great efforts have
been devoted  to  developing  desalination  technologies  to  produce
clean water from seawater [7–9]. While the two traditionally used
desalination  technologies  have  been  membrane  filtration  and
thermal  distillation,  neither  of  these  approaches  has  met  the
desired high level of environmental friendliness because they both
consume intensive amounts of electricity derived from fossil fuels
[10–13]. Therefore, new desalination technologies driven by green
and sustainable energy sources are currently in high demand [14,
15].  Interfacial  solar  evaporation  (ISE)  driven  desalination  is  a
promising  solution  for  environmentally  friendly  and  sustainable
freshwater production [15, 16].

ISE process involves efficient solar light-to-heat conversion and
heat  localization  at  evaporation  surfaces  to  enhance  water
evaporation  [17].  Therefore,  compared  to  conventional  bulk
heating  solar  distillation,  ISE  technologies  exhibit  outstanding
solar-to-vapor  energy  conversion  efficiency.  Rational  structure
design  of  photothermal  evaporators  and  judicial  energy
management  of  ISE  allow  converted  heat  from  sunlight  to  be

localized at  the evaporation surface for  efficient  vapor generation
instead  of  dissipation  into  the  environment.  The  recent  progress
and evolution of ISE technology have primarily been facilitated by
optimization of energy management [18]. Photothermal materials
and  evaporator  design  were  optimized  and  elaborated  towards
more  efficient  energy  utilization,  via  (1)  minimizing  energy  loss
from  evaporation  system  to  the  ambient  environment;  (2)
extending energy input from the ambient environment to enhance
evaporative  contributions;  (3)  reducing  evaporation  enthalpy  to
realize more efficient vaporization processes.

This  review  systematically  summarizes  these  pathways  for
enhancing  practical  solar  evaporation  performance  (Fig. 1).  It
introduces  the energy nexus in two-dimensional  (2D) and three-
dimensional  (3D)  evaporation  systems  and  points  out  the  main
differences. It is clearly demonstrated that the evaporation rate can
be significantly enhanced by either applying materials with highly
efficient light-to-heat conversion or structure design of state-of-art
evaporators with smart energy management strategies. This review
also summarizes the reduction in water vaporization enthalpy by
molecular  engineering,  such  as  surface  functional  group
modulation  and  hierarchical  structure  design.  These  significant
findings  have  paved  the  way  for  new  design  of  interfacial  solar
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evaporators  to  optimize  the  energy  nexus  by  considering  both
photothermal  materials,  energy  nexus,  and  all  environmental
factors during solar evaporation. The reviewed strategies thus may
provide  valuable  guides  for  achieving  high-performance  ISE  for
practical applications.

 2    Highly efficient solar absorbers
Solar  absorbers  play  a  critical  role  in  overall  solar  energy
conversion.  The  light-to-heat  conversion  efficiency  directly
determines the amount of solar energy available for ISE. In recent
years,  owing  to  the  rapid  development  in  materials  science  and
nanotechnology, various types of materials have been synthesized
and  demonstrated  excellent  light-to-heat  conversion  efficiency.
The  three  main  types  of  photothermal  materials  intensively  used
as  solar  absorber  in  ISE  systems  are  plasmonic  metals,
semiconductors,  and  carbon-based  materials  [19–35].  Since  a
number of review articles have focused on photothermal materials
for ISE, we herein only briefly introduce these three types of solar
absorbers.

 2.1    Plasmonic metals
Metal  materials  which  exhibit  plasmonic  effects  have  often  been
used as solar absorbing materials [36–40]. These plasmonic metals
have their own inherent oscillation frequency of free electrons, so
that once incident photons of a specific frequency reach the metal
surfaces, a near field-electron enhancement will be achieved with a

matching frequency for  that  metal  (Fig. 2(a)),  which is  known as
surface  plasmon  resonance  (SPR)  effect.  Under  resonant
illumination  by  incident  light,  the  plasmon-excited  electrons  are
non-radiatively damped via the Landau damping mechanism and
redistribute  their  energy  through  electron–electron  and
electron–phonon scattering  processes  to  generate  heat.  Owing  to
this plasmon resonance, the light-to-heat conversion efficiency can
be easily  boosted to  > 95%.  Currently,  plasmonic  metals,  such as
gold  [36, 41],  silver  [42],  copper  [43, 44],  cobalt  [45],  aluminium
[46],  and  indium  [39]  have  all  been  utilized  as  photothermal
materials.  Due  to  the  good  stability  of  noble  metals,  they  are
applicable  under  extreme  conditions.  However,  one  major
drawback of noble metals is the extremely high cost, which limits
their large-scale practical applications.

 2.2    Semiconductors
Low  cost  and  low  toxicity  semiconductors  have  emerged  as  a
potential choice of solar absorber [47–64]. Under solar irradiation,
electron–hole  pairs  are  generated  in  semiconductors  when  the
light  energy  is  higher  than  the  bandgap  (Fig. 2(b)).  For  narrow
bandgap  semiconductors,  when  the  excited  electron–hole  pairs
return  to  the  band  edges,  they  will  release  extra  energy  as  heat.
While  for  broadband  semiconductors,  the  light  energy  is  mostly
utilized  to  re-emit  photons  but  not  heat.  Recently,  several
semiconductors have been developed as solar absorbers, including
titanium-  and  molybdenum-based  semiconductors  [65–72],  NiO
[61, 63, 73],  CuO  [74–76],  CuxSy [77–79],  CoWO4−x [80],  Fe3O4
[81, 82],  and  MXene  [29, 34, 83–91].  Despite  showing  great
potential  for  efficient  light-to-heat  conversion,  the  relatively  low
stability  of  some  semiconductors  has  hindered  their  further
growth for practical ISE applications.

 2.3    Carbon-based materials
Carbon-based  materials  are  naturally  black  which  renders  the
materials superior performance in receiving broad-band solar light
[92–104]. More than half of the reported works in the field of ISE
utilized carbon-based materials as solar absorbers.  The process of
light-to-heat  conversion  in  carbon-based  materials  involves
excitation  of  electrons  by  solar  irradiation  and  their  subsequent
relaxation  to  the  ground  state.  With  rapid  lattice  vibration  (Fig.
2(c)),  the  solar  radiation  energy  is  quickly  thermalized  on  the
surfaces.  So  far,  carbon-based  materials  including  carbon  black
[105],  graphite  [106],  carbon  nanotube  [61, 107–112],  graphene
oxide [113–115], reduced graphene oxide [114–120], and various
polymers  [27, 121–132]  have  been  used  as  solar  absorbers.  The
low  cost  and  natural  accessibility  of  such  carbon-based  materials
make them prime candidates for practical ISE. Additionally, these
materials typically exhibit excellent chemical and physical stability,
placing carbon-based materials in a unique position for large-scale
and practical applications.

 

Figure 1    Schematic  diagram  of  strategies  for  constructing  efficient  ISE
systems.

 

Figure 2    Photothermal conversion mechanisms of (a) plasmonic metals, (b) semiconductors, and (c) carbon-based materials.
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 3    Highly  efficient  energy  management  in  2D
ISE systems
In  part,  due  to  the  extensive  exploration  and  evaluation  of
different  photothermal  materials,  ISE  systems  with  general  2D
evaporators  have  been  widely  reported.  There  is  no  doubt  that
solar  absorbers  with  excellent  light  absorption  can  realize
maximum  solar  energy  input.  However,  if  the  system  lacks
rational energy management, a considerable fraction of generated
thermal  energy  will  be  directly  lost  and  not  be  utilized  for  water
evaporation.  Therefore,  optimization  of  energy  management
during solar evaporation is extremely important for achieving high
energy efficiency.

Psolar

Pvapor

Preflection

Pradiation Pconvection

Pconduction

In a typical 2D ISE system, the energy nexus during solar steam
generation  is  depicted  in Fig. 3.  The  photothermal  layer  absorbs
and  converts  the  incident  solar  light  ( )  into  heat  for  vapor
generation ( ). During this process, part of the light is scattered
and  reflected  from  the  surface  to  the  ambient  environment,
inducing  a  loss  in  solar  energy  harvesting  ( ).  Most  of  the
converted  heat  is  consumed  by  water  evaporation,  while  the
surplus  heat  on  the  evaporation  surface  gives  rise  to  a  higher
surface temperature than that of the surrounding ambient air and
bulk water. Therefore, radiative ( ) and convective ( )
thermal  losses  from  the  evaporation  surface  to  the  ambient
environment occur due to this temperature difference. In addition,
conductive heat loss ( ) from the evaporation surface to the
bulk  water  also  occurs.  The  ISE  system  also  contains  additional
energies that are not derived from direct solar light. This includes
the  latent  heat  released  from  vapor  condensation,  which  is
discharged  when  the  generated  hot  vapor  encounters  cold  air
above  the  evaporation  surface.  In  a  2D  ISE  system,  the  energy
transfer  process  does  not  always  involve  latent  heat,  since  it  is
often hard to recycle this part of the energy by the 2D evaporation
surface located under the latent heat releasing zone. Therefore, the
energy nexus for a 2D ISE system can be described using Eq. (1)

Psolar = Pvapor +Preflection +Pradiation +Pconvection +Pconduction (1)

PsolarThe  solar  energy  input  can  then  be  calculated  based  on
light absorption and reflection using Eqs. (2) and (3), respectively

Psolar = AEin (2)

Preflection = A(1−α)Ein (3)

A Ein αwhere , , and  represent the area of solar evaporation surface
(SES), the energy of the incident light (1.0 kW·m−2 for 1 sun), and
the  optical  absorption  coefficient  (generally  noted  as  the
absorbance from 200 to 2500 nm), respectively.

The  radiative  and  convective  energy  losses  are  calculated  via
Eqs. (4) and (5) as shown below

Pradiation = Aεσ
(
T1

4 −T0
4) (4)

Pconvection = Ah(T1−T0) (5)

ε σ
h

T0 T1

where  is  the  emissivity  of  the  evaporation  surface  and  is  the
Stefan–Boltzmann  constant  (5.67  ×  10−8 W·m−2·K−4).  represents
the  convection  heat  transfer  coefficient  (generally  from  5  to
10  W·m−2·K−1 for  interfacial  evaporation).  and  are  the
ambient  and  evaporation  surface  temperatures  during  solar
evaporation.

The  conductive  heat  loss  from  the  evaporation  surface  to  the
bulk water can be expressed by Eq. (6)

Pconduction =−Cm∆T (6)

C m
∆T

where  is heat capacity of the water,  is the mass of bulk water,
and  is  the  temperature  difference  of  the  bulk  water  during
solar evaporation.

Based on the gradual understanding of the energy nexus in 2D
ISE system, the strategies towards efficient solar energy utilization
for  water  evaporation  were  demonstrated  in  recent  years.  The
principle is  noted as promoting energy harvest  from the incident
solar light  while  minimizing the energy loss  from the ISE system
to the environment.

 3.1    Minimizing solar reflection
As  depicted  in  Eqs.  (2)  and  (3),  the  efficient  utilization  of  solar
light  requires  to  reduce  solar  reflection  on  the  absorber  surface.
The  reflectance  of  the  solar  absorber  is  normally  related  to  its
surface morphology. If the surface of solar absorber is flat without
sub-structures, a part of the incident light is directly reflected from
the  surface.  In  contrast,  the  surface  with  hierarchical  structures
enables  multiple  reflections  of  the  incident  solar  light  and
eventually  results  in  light  extinction.  Therefore,  an  efficient
initiative  of  reducing  solar  reflection  requires  morphology  and
structure tailoring of the absorber surface [133–141]. The previous
work reported several typical strategies in this regard [142–145], as
illustrated  in Figs.  4(a)–4(d).  The  first  one  [142]  reported  a
hierarchical  structure  constructed  by  grafting  graphene  sheets
onto the 3D porous polyvinyl alcohol (PVA) networks (Fig. 4(a)).
In  addition  to  the  solar  conversion,  the  graphene  sheets  with
random  distribution  also  increased  the  specific  surface  area  for
multiple reflections. The incident light was trapped in the porous
networks  with  the  assistance  of  graphene  sheets  attachment.  The
solar reflectance was thus decreased accordingly. Another strategy
[143]  for  minimizing  solar  reflection  is  to  stack  the  crumpled
layers  in  horizontal  alignment  (Fig. 4(b)).  The  presence  of  the
layer-by-layer  structure facilitated light  dissipation between layers
which  was  considered  as  a  strong  complement  to  the  solar
reflection  on  the  top  rough  surface.  Additionally,  some  very
similar structures with vertically aligned layers were demonstrated
to  be  very  effective  in  reducing  solar  reflection,  such  as  the
structural  design  [144]  shown  in Fig. 4(c).  It  applied  CuO
nanowires  as  skeleton  and  graphdiyne  (GDY)  as  solar  absorbing
material.  The  high  specific  surface  area  of  GDY  integrating  with
CuO nanowire forest benefited multiple solar reflection processes
in  the  internal  gaps.  An  outstanding  solar  absorption
enhancement  was  thus  realized.  Moreover,  some  recent  work
adopted  laser  writing  to  engrave  the  surface  patterns  for  fully
receiving incident solar light.  As depicted in Fig. 4(d),  the surface

 

Figure 3    Schematic illustration of the energy nexus in a typical 2D ISE system.
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was  tailored  into  the  triangular  grooves  by  laser  treatment  [145].
The  patterned  surface  enabled  minimizing  solar  reflection  from
different  incident  angles.  The  incident  solar  light  was  mostly
confined in the grooves until being absorbed. All these efforts pave
the way for centering highly efficient solar absorption processes by
suppressing solar reflection on evaporation surfaces.

 3.2    Minimizing radiative and convective heat losses
In  addition  to  mitigating  reflective  solar  energy  loss,  some
subsequent  research  work  focused  on  avoiding  radiation  and
convection losses from the evaporation surface to the surrounding
air  [146–151].  As  depicted  in  Eq.  (4),  thermal  radiation  loss  is
mainly caused by the high emissivity of photothermal evaporation
surface  and  its  higher  surface  temperature  compared  to  the
surrounding  air,  resulting  in  a  net  flux  of  infrared  (IR)  photons
being emitted to the ambient environment. Therefore, an efficient
suppression  of  radiation  loss  can  be  realized  by  lowering  the
emissivity  of  the  photothermal  materials  and evaporation surface
temperature.  Accordingly,  a  dual-layer  design  [149]  was  applied
for  reducing  the  radiative  loss  (Fig. 5(a)(i)).  In  this  work,  Ni
nanoparticles (NPs) were encapsulated in carbon and silica shells
and  assembled  in  an  orderly  manner  to  form  a  solar  harvesting
structure of graded refractive indices on an infrared reflector (Fig.
5(a)(ii)).  With  the  design  of  the  infrared  reflecting  module,  the
solar absorber realized low thermal emittance so that the radiative
loss was successfully reduced (Fig. 5(a)(iii)).

According  to  the  thermodynamics,  convection  is  more
complicated  than  radiation.  For  temperature  difference  <  50  K,
Eq.  (5)  (Newton’s  law)  is  valid  for  expressing  the  convection
process, where the convective heat loss depends on the convection
coefficient  and  the  temperature  difference  between  the
evaporation surface and the surrounding environment.  However,
during  solar  evaporation,  convection  loss  is  normally
simultaneously  accompanied  by  radiative  loss.  Convection  is
regarded  as  a  hybrid  thermal  transfer  effect,  so  very  little  work

manipulated  convective  issue  independently.  Complexities  also
exist in the nature of the ambient fluid (liquid or gas), the physical
parameters  of  the  fluid  (mass  density,  thermal  conductivity,
specific  heat  capacity,  and  dynamic  viscosity),  and  the  geometric
and physical properties of the evaporation surface (hydrophilicity,
microstructures, surface roughness, and water content). Although
many  factors  need  to  be  considered  to  comprehensively
understand  the  mechanism  of  heat  convection,  there  are  still
regularities to follow.

As  depicted  in  Eq.  (5),  reducing  the  affordable  area  of  the
surrounding  fluid  would  logically  reduce  convection  loss,  which
could  be  enabled  by  partially  covering  the  interface  between
evaporation  layer  and  the  air  (Fig. 5(b)(i)).  This  work  [150]
demonstrated  an  unconventional  cup-shape  design  for  ISE
process.  During  solar  evaporation,  the  generated  vapor  escaped
from the bottom layer of the absorber and condensed at the wall
of a copper-based cup (Fig. 5(b)(ii)). Due to the unique downward
vapor  collecting  approach,  the  photothermal  evaporation  surface
was allowed to be covered by a protective layer (Fig. 5(b)(iii)). The
covered  layer  enabled  a  convection  free  zone  above  the
evaporation surface which eliminated the convective loss from the
ISE system to the surrounding air. In addition, the air convection
above  the  evaporation  surface  spontaneously  induced  by  solar
evaporation  could  be  regulated  by  surface  tailoring  [151].  Xu’s
group reported that with the increase in the size of the evaporation
surface,  the  evaporation  rate  decreased.  The  reason  is  that  the
middle  portion  of  the  large  evaporation  surface  acts  as  a   “dead
evaporation  zone” with  little  contribution  to  vapor  generation
during solar  evaporation.  As depicted in Fig. 5(c)(i),  the  intensity
of air convection above the middle evaporation surface was much
lower than that at the edges which indicated the middle portion of
the  evaporation  surface  had  vapor  accumulation  and  was  not
active  in  water  evaporation.  When  the  middle  portion  of  the
evaporation  surface  was  selectively  removed,  although  the  total
evaporation surface area decreased, both the evaporation rate and
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Figure 4    (a) Schematic illustration of reducing solar reflectance by rough surface light trapping. Reproduced with permission from Ref. [142], © Tsinghua University
Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020. (b) Proposed mechanism of multi-layer light trapping to reduce reflectance. Reproduced
with  permission  from  Ref.  [143],  ©  WILEY-VCH  Verlag  GmbH  &  Co.  KGaA,  Weimheim  2019.  (c)  Hierarchical  surface  structure  enabled  avoidance  of  solar
reflection.  Reproduced  with  permission  from  Ref.  [144],  ©  American  Chemical  Society  2017.  (d)  Tailoring  surface  pattern  of  solar  absorbing  layer  for  lowering
reflection. Reproduced with permission from Ref. [145], © The Royal Society of Chemistry 2021.
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vapor  output  increased  due  to  the  reconfigured  and  enhanced
convection  above  the  entire  evaporation  surface  (Fig. 5(c)(ii)).
Therefore, it demonstrated that the regulation of air convection by
surface  topology  design  is  also  a  promising  strategy  for
evaporation  rate  enhancement  in  interfacial  solar  evaporation
systems.

 3.3    Minimizing conductive heat loss
The  water  pathway  is  one  of  the  key  components  in  an  ISE
system.  A  rational  water  pathway  ensures  an  adequate  water
supply  and  simultaneously  localizes  heat  on  the  evaporation
surface  during  solar  evaporation.  Advances  in  constructing  an
efficient ISE system require smart water pathway designs. To date,
water transport structures have evolved in three main types from a
self-floating  3D  water  path  (i.e.,  full  contact  between  the
evaporation surface and bulk water) to the water paths in 2D and
one-dimensional (1D) forms (Fig. 6).

The  initial  proposed  evaporator  designs  involved  floating
photothermal  materials  on  the  bulk  water  surface  [152–168].
Normally,  in  this  case,  the  selected  materials  are  porous  and
lightweight  to  ensure  self-floating  and  adequate  water  supply.

During solar evaporation, water would be pumped from the bulk
water  to  the  top  evaporation  surface  through  capillary  force.
Although  the  full  contact  between  such  materials  and  the  bulk
water  can  give  continuous  water  supply,  it  also  leads  to  more
energy loss from the evaporation surface to the bulk water by heat
conduction  during  solar  evaporation.  The  typical  3D  water  path
[161]  for  interfacial  solar  evaporation  was  demonstrated  in Fig.
6(a)(i),  where  the  porous  melamine  foam was  employed  as  solar
evaporator (Fig. 6(a)(ii)). The interconnected channels of the foam
could  sustain  water  flow  from  the  bottom  to  the  evaporation
surface  via  capillary  force.  Since  the  water  flowing  path  was  not
further  regulated,  the  conductive  heat  directly  transferred  to  the
underneath  bulk  water  through  the  pores  of  the  foam.  In  this
regard,  the  normal  strategy  to  reduce  conductive  heat  loss  is  to
increase the thickness of the evaporator (i.e., lengthening the water
paths).

Recently, the water path designs were developed towards more
efficient  energy  management  for  evaporation,  which  could  be
mainly classified as  2D and 1D water paths (Figs.  6(b) and 6(c)).
Evaporators  with  2D  water  path  demonstrated  efficient
evaporation performance by using light-weight thermal insulation

 

Figure 5    (a) Concentrating converted heat for evaporation via minimizing interfacial radiation loss: (i) schematic illustration, (ii) microscopic images of as-fabricated
selective solar absorber, and (iii) radiative flux nexus of the selective solar absorber in infrared range. Reproduced with permission from Ref. [149], © The Royal Society
of  Chemistry  2021.  (b)  Highly  efficient  utilization of  converted heat  for  evaporation via  minimizing interfacial  convection loss:  (i)  set-up diagram of  the cup-shape
water purification system, (ii) schematic illustration of the process of solar water purification, and (iii) diagram of specific configuration of the solar water purification
system  that  contained  convective  flow  protection  layer.  Reproduced  with  permission  from  Ref.  [150],  ©  Elsevier  Inc.  2021.  (c)  Tailoring  evaporation  surface  for
convective activation: (i) numerical simulation of air convection above an 8 cm × 8 cm evaporation surface (left corner) during solar evaporation and (ii) simulated
convection above an 8 cm × 8 cm evaporation surface with a 2 cm × 2 cm area removed from the middle (left corner) during solar evaporation. Reproduced with
permission from Ref. [151], © Science China Press 2022. Published by Elsevier B.V. and Science China Press.
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foam  warped  by  a  thin  and  confined  water  transportation  layer
[81–87, 102, 169–172].  For  example,  a  polystyrene  (PS)  foam
thermal  insulator  was  configurated  at  the  bottom  of  the  solar
absorber (Figs. 6(b)(i) and 6(b)(ii)) [170]. Only a small part of the
materials  containing  water  was  immersed  in  the  bulk  water
instead  of  full  contact.  During  solar  evaporation,  the  conductive
heat transfer paths corresponded to the water flowing paths.  The
decreased  contact  area  led  to  lower  heat  exchange  between  the
evaporation surface and the bulk water. Therefore, the conductive
energy  loss  to  bulk  water  was  further  suppressed  and  more
efficient  heat  localization  was  achieved  via  this  2D  water  path
design.  Additionally,  some  work  reported  more  efficient  designs
with one narrow water path [173–178]. As illustrated in Fig. 6(c),
similar to evaporators with a 2D water paths, this approach [177]
had very good thermal management where only a narrow 1D heat
conduction  path  was  used  to  avoid  conductive  heat  loss.  With
further  optimization  of  the  1D  path  length,  the  heat  conduction
loss from the evaporation surface to the bulk water was eliminated
by  this  umbrella  design.  Owing  to  the  advanced  energy
management in heat conduction, it realized the improved solar-to-
vapor efficiency.

 4    Highly  efficient  energy  management  in  3D
systems
Recently,  a  paradigm  shift  occurred  in  our  understanding  of
energy  management  in  3D  solar  evaporators,  which  has
subsequently  affected  most  3D  evaporator  designs.  In  3D
evaporators,  the  newly  developed  strategy  is  to  expand  energy
input  options  for  ISE,  by  harvesting  extra  energy  from  the
surrounding environment together with solar energy input [179].
Figure  7 illustrates  the  mechanism  of  obtaining  environmental
energy  using  a  3D  ISE  design  and  the  energy  transfer  process
during solar evaporation.

Psolar

Psolar vapor

Preflection

Pradiative loss Pconvective loss

Unlike  a  2D  structure  where  solar  light  is  absorbed  on  the
entire  evaporation  surfaces,  3D  evaporators  have  additional
surfaces that are not exposed to solar light. Taking a 3D cylindrical
evaporator  as  example,  during  solar  evaporation,  the  top
evaporation  surface  as  SES  receives  light  ( )  and  generates
vapor  ( ).  The  light-to-heat  conversion  on  this  surface
induces  higher  surface  temperature  and  the  consequent  energy
loss to the ambient environment via reflection ( ), radiation
( ), and convection ( ). There is also a downward

Pconduction

Pcold vapor

Pradiative gain Pconvective gain

conductive  heat  loss  ( )  to  the  bulk  water  due  to  the
temperature  difference  between  SES  and  the  water  body.  In  this
way,  solar  evaporation  on  SES  is  similar  to  the  energy  transfer
process in 2D systems. However,  the evaporation on the surfaces
without solar irradiation (cold evaporation surface (CES)) is quite
different  from  that  in  2D  systems.  The  side  walls  of  the  3D
evaporator  cannot  receive  solar  light  directly  so  that  a  cold
evaporation  (i.e.,  dark  evaporation)  occurs  ( ).  The
evaporative  cooling  effect  gives  rise  to  the  lower  surface
temperature  on  CES  than  the  ambient  temperature.  Based  on
thermodynamic  laws  (Eqs.  (4)  and  (5)),  a  reversed  energy  flow
from the surrounding air to the evaporation surfaces via radiation
and  convection  (  and )  occurs.  This  passive
energy harvest resulted in more energy sources being available for
water  evaporation,  which  could  break  the  theoretical  limit
assuming  100%  light-to-vapor  energy  conversion.  Based  on  the
above analysis, the energy nexus in this 3D ISE system is expressed
by Eq. (7)

Psolar +Pradiative gain +Pconvective gain =

Psolar vapor +Pcold vapor +Preflection +Pradiative loss +Pconvective loss +Pconduction

(7)

This equation highlights possible strategies for achieving highly
efficient  evaporation  performance  in  3D  ISE  systems.  The
principal point is to create additional CESs in confined space (i.e.,
occupied area)  in order to gain as  much energy as  possible  from
the  surroundings  in  addition  to  the  solar  light  energy.  Other
strategies  guiding  research  in  this  area  include  reducing,
eliminating, or even reversing energy loss to the surroundings and
the  bulk  water  through  3D  evaporator  designs.  Moreover,  using
convective flow or other energy sources to assist solar evaporation
is  also  considered  to  improve  water  evaporation  performances,
which  has  been  demonstrated  by  some  elaborately  designed  3D
ISE systems.

 4.1    Energy harvesting from air
The concept of exploiting energy input from the surrounding air
was  initially  proposed  as  shown  in Fig. 8(a)(i).  This  work  [179]
introduced  the  CESs  (i.e.,  the  evaporation  surfaces  without  solar
radiation) into a 3D ISE system (Fig. 8(a)(ii)).  Due to the cooling
effect  of  water  evaporation,  the  CES temperature  was  lower  than
the  ambient  temperature,  which  led  to  the  energy  flow  from  the
surrounding  air  to  the  evaporation  system  according  to  the

 

Figure 6    (a) Typical  3D water path of ISE system: (i)  diagram of interconnected water transportation and solar evaporation processes by using a melamine-foam-
based evaporator and (ii) the photograph of the melamine-foam-based evaporator with 3D interconnected water path. Reproduced with permission from Ref. [161], ©
American  Chemical  Society  2020.  (b)  Typical  2D water  path  of  ISE  system:  (i)  schematic  illustration  of  2D water  path  by  using  a  PS  foam thermal  insulator  as  a
support and (ii) the photograph of the solar evaporator with 2D water path. Reproduced with permission from Ref. [170], © Li, X. Q. et al.  2016. (c) An umbrella-
shaped solar evaporator with 1D water path. Reproduced with permission from Ref. [177], © Li, X. Q. et al. 2017.
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thermodynamics  (Eqs.  (4)  and  (5)).  The  environmental  energy
input  as  a  complement  of  solar  energy  input  contributed  to  the
more efficient ISE process.

Inspired by the concept of environmental energy harvest, great
advancements  have  been  made  towards  highly  efficient  3D  ISE
systems  [66, 94, 100, 180–204].  The  following  designs  that
demonstrated excellent energy management reveal  the significant
progress in this field (Figs. 8(b) and 8(c)). Firstly, a bio-based pine
tower  design  [201]  realized  a  significant  evaporation  boost  by
enlarging spatial evaporation surfaces (Fig. 8(b)(i)).  The dispersed
branches on the 3D pine tower provided considerable CESs (Fig.
8(b)(ii)). In this regard, the more spatial evaporation surfaces, the
more  energy  gained  from  the  surrounding  air,  with  a
consequential  increase  in  vapor  generation  on  the  surfaces.
Theoretically,  the  spatial  evaporation  surfaces  could  be  infinitely
expanded by increasing in height or density. However, in practice,
engineering  issues,  such  as  over-gravity  water  transportation,

mechanical  support,  and  vapor  escaping,  also  need  to  be
considered  in  the  system  design.  Therefore,  a  heat  sink-like
evaporator  [202]  was  developed  which  maximized  the  passive
thermal  harvesting  from  the  surroundings  (Fig. 8(c)(i)).  The
principle  of  this  design  was  to  reverse  the  heat-sink  cooling  into
thermally  gaining  energy  from  the  environment.  By  optimizing
the  number  of  vertical  slices,  the  evaporation  performance  could
be enhanced.  The energy utilization reached an outstanding level
in  the  limited  space.  In  addition,  the  cold  fins  successfully
extracted  energy  from  the  above  SES  (i.e.,  solar  evaporation
surface), so that the temperature of SES was significantly decreased
to  be  lower  than  the  ambient  environment  (Fig. 8(c)(ii)).
Therefore,  all  the  evaporation  surfaces  of  this  3D  evaporator
participated  in  cold  evaporation  under  1.0  sun  irradiation  which
enabled a massive environmental energy to gain from all surfaces.
The calculated energy gained from the surrounding environment
is 170% of solar energy input.

 

Figure 7    Schematic illustration of the energy nexus in typical 3D interfacial solar evaporation system.
 

Figure 8    (a) Environmental energy-input assisted 3D interfacial solar evaporator composed of vertical cylindrical units: (i) schematic diagram of the environmental
energy-enhanced  interfacial  solar  vapor  generator  and  (ii)  photograph  and  IR  images  of  the  3D  interfacial  solar  evaporator  composed  of  vertical  cylindrical  units.
Reproduced with permission from Ref. [179], © Elsevier Inc. 2018. (b) Bio-based carbonized 3D pine tower evaporator with energy harvesting from surrounding air:
(i) schematic diagram of the energy management of the carbonized 3D pine tower evaporator during solar evaporation and (ii) IR images of the carbonized 3D pine
tower  evaporator  during  solar  evaporation.  Reproduced  with  permission  from  Ref.  [201],  ©  Bian,  Y.  et  al.  2019.  (c)  Heatsink-like  interfacial  solar  evaporator  with
energy harvesting from the air:  (i)  diagram of  the heatsink-like interfacial  solar  evaporator  and (ii)  IR images of  the heatsink-like interfacial  solar  evaporator  under
1 sun solar irradiation. Reproduced with permission from Ref. [202], © Wu, X. et al. 2021.
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 4.2    Energy harvesting from bulk water

TSES

Twater TCES

Recently, gaining energy from bulk water has been developed as a
general and effective strategy for evaporation enhancement in 3D
ISE  systems  [205–207].  Specifically,  the  presence  of  the  CESs  in
3D ISE systems forms the lower temperature zones  compared to
that  of  the  ambient  environment  (i.e.,  air  or  water).  The  energy
flows from the ambient environment to the CESs according to the
thermodynamics.  In  this  regard,  extracting  energy  from water  to
the  CESs  has  its  theoretical  basis  which  has  led  to  the  following
research work [205]. With the optimization of 3D ISE designs, the
energy flowing process was first  revealed as shown in Fig. 9(a)(i).
It started with the analysis of the temperature relationship between
the  objects  in  a  3D  cylindric  ISE  system,  which  noted  as  >

 >  (i.e., represented the temperature of the SES and bulk
water and CES, respectively). The CES was considered as the end
of  energy  flowing  path  in  ISE  process.  Accordingly,  the  surface
area  for  cold  evaporation  directly  determined  the  capability  of
extracting  energy  from  both  energy  sources  of  SES  and  water.  If
the CES area between the SES and bulk water was not sufficient, it
cannot  fully  eliminate  the  conductive  heat  from  the  SES  to  the
bulk  water,  which  led  to  the  net  energy  loss  to  the  bulk  water.
While  with  the  increase  in  CES  area,  the  conductive  heat  flow

changed,  as  indicated  in Fig. 9(a)(i).  The  sufficient  area  of  CES
enabled  extraction  of  energy  from  bulk  water  in  addition  to  the
assimilation of the heat flow from SES, resulting in a net thermal
energy flow from the bulk water to the evaporator. The direction
of  thermal  energy  flow  was  demonstrated  by  monitoring  the
temperature change of water held in a thermal insulator container
with  3D ISE  systems  of  different  CES  areas  (Fig. 9(a)(ii)).  In  this
3D ISE system, when the height of  evaporator reached 5 cm, the
evaporator started to extract energy from the bulk water.

A  very  similar  design  [206]  was  reported  to  enhance  solar
evaporation by harvesting energy from bulk water (Fig. 9(b)). The
3D  evaporator  was  directly  obtained  via  an  emulsion  templating
method.  Engineering  of  the  overall  shape  and  internal  pores
produced  a  3D  evaporator  that  could  suppress  conduction  heat
loss  and  efficiently  collect  thermal  energy  from  its  surroundings,
boosting  the  evaporation  rate  to  2.82  kg·m−2·h−1 under  1.0  sun
illumination.  The structure  of  the  evaporator  is  illustrated in Fig.
9(b)(i).  The  top  solar  absorbing  layer  connected  to  the  side  cold
evaporation  layer  which  was  also  the  water  transportation  paths.
The  middle  cavity  was  filled  with  air,  designed  for  suppressing
thermal  energy  loss  from  the  top  to  the  bottom.  During  solar
evaporation,  the  temperature  of  CES  kept  lower  than  that  of  the
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Figure 9    (a) Concept of energy harvest from bulk water for evaporation boost in a 3D cylindrical ISE system: (i) schematic illustration of energy harvesting from bulk
water in a 3D cylindrical ISE system and (ii) water temperature change in solar evaporation test with the increase in evaporator height. Reproduced with permission
from  Ref.  [205],  ©  Elsevier  Ltd.  2020.  (b)  Water  energy  harvest  in  a  3D  cylindrical  ISE  system:  (i)  structure  diagram  and  photograph  of  the  3D  cylindrical  ISE
evaporator, (ii) temperature change of the points in 3D cylindric ISE system during solar evaporation, and (iii) temperature change of the points in solar evaporation
test  with  the  increase  in  evaporator  height.  Reproduced  with  permission  from  Ref.  [206],  ©  Chen,  J.  X.  et  al.  2022.  (c)  Rapid  water  energy  extraction  via  highly
thermally conductive evaporator support in a 3D cylindrical ISE system: (i) diagram of the 3D cylindrical ISE system with heat transfer medium as support, (ii) thermal
conductivity of the supports, and (iii) numerical simulations of heat transfer process in 3D cylindrical ISE systems with different supports. Reproduced with permission
from Ref. [207], © Science China Press 2021. Published by Elsevier B.V. and Science China Press.
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solar  absorber,  air,  and  water  (Fig. 9(b)(ii)).  In  terms  of  energy
flow  process,  the  bulk  water  temperature  decreased,  which
confirmed  the  energy  extraction  from  water  to  the  evaporator.
With the increase in the height of evaporator (i.e., increasing CES
area), the water temperature was further reduced (Fig. 9(b)(ii)). It
also  demonstrated  that  more  CES  area  promoted  water  energy
extraction.

Although  the  thermal  energy  could  be  extracted  from  bulk
water  to  evaporation  surfaces  for  boosting  water  evaporation,  it
was  not  very efficient  due to  the low thermal  conductivity  of  the
used  materials.  Based  on  this,  the  rapid  water  energy  extraction
was studied by thermally connecting the CESs and the bulk water
[207]. Instead of using typical thermal insulation materials, this 3D
evaporator  applied  highly  thermally  conductive  materials  as
evaporator  support  (Fig. 9(c)(i)).  To  demonstrate  the  relation
between evaporation performance and thermal conductivity of the
support,  the  expanded  polystyrene  foam  (i.e.,  thermal  insulation
material),  steel  (i.e.,  thermally  conductive  material),  and
aluminum  (i.e.,  highly  thermally  conductive)  tubes  were  used  as
the support (Fig. 9(c)(ii)). The results showed with the increase in
thermal  conductivity  of  the  evaporator  support,  the  evaporation
performance  was  significantly  improved.  Numerical  simulations
also proved that the highly thermally conductive path contributed
to  the  much  faster  water  energy  extraction  for  evaporative
utilization  on  CESs.  This  work  also  proved  that  the  energy
extracted from bulk water  could be greater  than the solar  energy
input.  Therefore,  energy  harvesting  from  bulk  water  can  be
considered a practical  strategy towards efficient solar evaporation
in 3D ISE systems.

 4.3    Advanced energy management via other strategies
Some  recent  work  reported  other  strategies  for  boosting
evaporation  performance  apart  from  obtaining  energy  from  the
environment.  One  representative  approach  was  to  complement
solar  evaporation  enhancement  by  utilizing  wind  (i.e.,  air
convective  flow)  [208–212].  The  wind  energy  was  regarded  as  a
green  and  inexhaustible  energy  in  nature.  In  practical  water
treatment,  taking  advantage  of  wind  for  solar  evaporation  could
significantly enhance the evaporation rate because the wind could
take  away  the  generated  vapor  to  maintain  a  low  humidity
environment  near  the  evaporation  surface  for  continuous
evaporation.  From  the  viewpoint  of  energy  transfer,  the
evaporation  surfaces  were  cooled  down  by  the  wind,  which
suppresses  the  energy  loss  via  convection  and  radiation.  If  the
wind is  strong enough,  the cooling effect  could make the surface
temperature lower than the environmental temperature, resulting
in energy harvesting from the ambient environment during solar
evaporation. Therefore, more energy is available to benefit efficient
solar evaporation process.  As shown in Fig. 10(a)(i),  a porous 3D
ISE evaporator [208] was introduced for boosting evaporation rate
by  wind.  During  solar  evaporation,  the  convective  flow  crossed
through  the  interconnected  porous  structure  (Fig. 10(a)(ii)).  The
inner  vapor  was  removed  to  the  environment,  which  could
activate the inner evaporation surfaces.

In  addition,  another  kind  of  energy,  the  latent  heat  released
from  vapor  condensation,  was  also  collected  and  reused  to
increase water evaporation [213]. The released latent heat induced
by vapor condensation normally exists above the solar evaporation
surface due to the temperature difference between the air and the
generated hot  vapor.  It  was very hard to reabsorb the latent  heat
by a 2D flat evaporator (Fig. 10(b)(i)) because the latent heat was
released  into  the  air  above  the  evaporation  surface.  While  an

evaporator with vertical cold slices as CESs located above the SES
enabled  the  absorption  of  the  latent  heat  for  evaporation
enhancement  in  addition  to  the  harvested  energy  from  the
surrounding air (Fig. 10(b)(ii)).

Very  recently,  an  integrated  evaporation  design  [214]  was
developed  by  combining  solar  electricity  generation  and  solar
evaporation,  in  which  the  solar  cell  was  placed  above  the  solar
evaporator.  Under  solar  radiation,  the  solar  cell  absorbed  light
photons above its bandgap, while the solar evaporator received the
below-bandgap  photons  for  thermal  conversion.  As  depicted  in
Fig. 10(c)(i),  the  two  modules  in  non-contact  state  led  to  low
outputs in both parts due to the poor energy management in the
integrated  system.  The  solar  cell  had  an  issue  that  the  generated
heat  decreased  the  solar-to-electricity  efficiency.  Meanwhile,  the
evaporation  performance  of  the  underneath  evaporation  surface
was  also  inefficient  because  the  solar  light  was  partially  absorbed
by  the  solar  cell  above.  To  address  the  inappropriate  thermal
management  of  both  solar  cell  and  solar  evaporator  in  the  non-
contact  configuration,  a  thermally  conductive  bridge  was
introduced  to  connect  the  two  parts  (Fig. 10(c)(ii)).  This
modification successfully transferred the waste heat from solar cell
to the evaporator. Therefore, the solar cell was cooled down which
improved the efficiency of electricity generation. Concurrently, the
evaporator  received  more  heat  which  also  improved  the  water
evaporation rate.

 4.4    Reduction  of  vaporization  enthalpy  by  molecular
engineering
So  far,  a  feasible  and  promising  approach  to  improve  solar
evaporation output from the same energy input is lowering water
vaporization  enthalpy  by  hierarchically  structured  hydrogels,  for
example,  the  hydrogels  with  3D  cross-linked  polymer  networks
[122, 134, 142, 215–229]. The hydrophilicity of hydrogels is due to
hydrophilic groups in polymer chains, including hydroxyl groups
(–OH), sulfonic acid groups (–SO3H), amino groups (–NH2), and
carboxylic acid groups (–COOH) (Fig. 11(a)(i)).  These functional
groups  can  bond  with  water  molecules  through  noncovalent
interactions  such  as  hydrogen  bonding  and  electrostatic
interactions. Therefore, the state of the water in the hydrogel could
be  varied  via  adjusting  functional  groups  of  the  hydrogel.  In
general,  the  water  state  in  hydrogels  is  classified  into  three  types,
which  are  bound  water,  intermediate  water,  and  free  water  (Fig.
11(a)(ii)).  Free  water  is  associated  with  water  molecules  whose
structure  is  similar  to  that  of  bulk  water,  exhibiting  negligible
interaction  with  polymer  chains.  Bound  water  consists  of  water
molecules that have strong interactions with functional groups in
polymer chains. While intermediate water exists between free and
bound water and interacts weakly with polymer chains, as well as
adjacent water molecules. Therefore, the intermediate water has a
reduced  energy  demand  (i.e.,  evaporation  enthalpy)  for  water
evaporation,  which  is  the  core  reason  for  boosting  evaporation
rate  with  same  energy  consumption.  In  addition  to  the  proper
functional  group  grafting,  structures  of  polymer  networks  also
determine  the  content  of  intermediate  water  in  the  hydrogels
[230–232].  The  nano-porous  hydrogel  enables  the  regulation  of
water  state  by  hierarchical  water  pathways  in  the  hydrogel  (Figs.
11(b)(i) and 11(b)(ii)),  including  internal  gaps,  micron  channels,
and  molecular  meshes  [218].  These  structures  also  provide  fast
water  pumping  and  diffusion  to  sustain  high-rate  water
evaporation. The converted solar thermal energy can be efficiently
utilized  to  power  the  vaporization  of  water  contained  in  the
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molecular  meshes  of  the  poly(vinyl  alcohol)  (PVA)  network,
where  the  skeleton  of  the  hydrogel  facilitates  water  evaporation.
With  the  decreased  vaporization  enthalpy  and  hierarchically
structure construction, the evaporation rate can be greatly boosted
which  is  now  an  extensively  applied  strategy  for  highly  efficient
ISE.

Inspired  by  this  concept,  some  work  reported  very  high
evaporation rates achieved by optimized designs of hydrogels [87,
110, 233–236].  For  example,  a  hierarchical  structure  was
constructed  using  2D  materials  (MXene  and  reduced  graphene
oxide) and 3D networks (PVA and chitosan) [87],  as depicted in
Fig. 11(c).  With  rich  functional  groups  and  elaborated  porous
structure,  the  hydrogel  significantly  reduced  the  water
vaporization  enthalpy  and  improved  water  transportation  by  the
3D network, leading to remarkable evaporation rate enhancement.
Another hydrogel (Fig. 11(d)) [236] with integrated hybrid regions
of  covalent  organic  framework  (COF)  and  graphene  realized  a
very  high  water  evaporation  rate  of  3.69  kg·m−2·h−1 under  1  sun

irradiation.  Apart  from  the  micro-  and  nanoscale  controlling  of
structure  and  functional  group,  regional  regulation  of
hydrophilicity  by  adjusting  the  content  of  the  covalent  organic
framework  and  graphene  in  hydrogel  is  also  accountable  for
evaporation  rate  enhancement.  This  strategy  well  optimized  the
water  content  and  state  in  the  hydrogel,  resulting  in  significant
reduction  in  water  vaporization  enthalpy.  Additionally,  the
elaborated  3D  porous  hydrogels  could  also  sustain  high
evaporation  rate  in  practical  brine  treatment  [237, 238].
Compared  with  most  evaporators  without  structural  design,  the
hierarchically  structured  hydrogels  induce  accelerated  water  flow
by  the  abundant  channels,  which  offers  a  potential  approach  to
avoid  salt  fouling  on  evaporation  surfaces  and  continuously
evaporate water at high rate during practical desalination process.

 5    Conclusion and perspectives
Based  on  the  in-depth  understanding  of  the  energy  nexus  in

 

Figure 10    (a)  The  concept  of  evaporation  enhancement  in  a  porous  3D ISE  evaporator  via  convective  flow:  (i)  photograph and structural  diagram of  3D porous
evaporator and (ii)  schematic illustration of solar evaporation process over a 3D porous evaporator with assistance of convective flow. Reproduced with permission
from Ref. [208], © Elsevier Inc. 2020. (b) The concept of boosting evaporation by recycling latent heat: (i) left: the energy flux of a typical 2D evaporator during solar
evaporation and right: the photograph of the typical 2D evaporator. (ii) Left: the energy flux of a fin-structured 3D evaporator during solar evaporation and right: the
photograph of  the  fin-structure  3D evaporator.  Reproduced  with  permission  from Ref.  [213],  ©  Science  China  Press  2020.  Published  by  Elsevier  B.V.  and Science
China Press. (c) The concept of applying conductive energy from solar cell for interfacial solar evaporation enhancement: (i) the energy flux diagram of the solar cell
integrated evaporator with an air gap between them and (ii) the energy flux diagram of the solar cell integrated evaporator with full contact between them. Reproduced
with permission from Ref. [214], © Elsevier Inc. 2019.
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interfacial  solar  evaporation  systems,  the  main  principles  for
achieving  highly  efficient  solar  evaporation  are  as  follows:  (1)
avoiding  energy  loss  from  the  evaporation  systems  to  the
environment;  (2)  expanding  energy  input  from  the  surrounding
air  and  bulk  water;  (3)  making  full  use  of  the  existing  energy
already  in  the  evaporation  systems;  (4)  lowering  the  evaporation
enthalpy.  In  addition,  it  should  point  out  that  due  to  the
significantly different energy nexus in 2D and 3D ISE systems, the
principles  for  designing  evaporators  are  also  different,  especially
for heat energy exchange between evaporators and bulk water. For
a 2D ISE system, heat conduction loss from evaporation surface to
bulk  water  is  inevitable,  thus  thermal  insulating  evaporator
support  is  necessary.  While  for  3D  ISE  system,  it  is  possible  to
extract  energy  from  bulk  water  to  the  evaporator,  thus  highly
thermally  conductive  support  is  favourable.  In  recent  years,
numerous  studies  have  proven  the  feasibility  of  these  strategies
through  optimizing  materials,  structures,  configurations,  and
processes  of  ISE  systems.  Highly  efficient  ISE  systems  thus  have
been  designed  and  fabricated.  However,  there  are  still  many
opportunities  to  further  improve  evaporation  performance
towards practical applications, especially on a 3D spatial scale, for
example,  introducing  new  energy  sources  for  evaporation,
exploring  more  cost-effective  photothermal  materials  and
innovative  evaporators,  improving  vapor  condensation  and
collection  efficiency,  increasing  clean  water  production  within  a
limited  space,  and  developing  large-scale  interfacial  solar
evaporation systems toward practical applications.

In the current context of worldwide clean water shortages and
advocacy  for  low  carbon  emission  technologies,  ISE  is  now
accepted  as  one  of  the  most  promising  technologies  to  solve  the
global clean water scarcity issues. However, there is still a long way
to  go  to  push  forward  the  real-world  applications  of  ISE
technology.  The  following  aspects  need  to  be  considered  for
constructing  next-generation  ISE  systems  towards  practical
applications:

(1)  The  first  notable  aspect  is  introducing  new energy  sources
for  ISE.  Solar  light  intensity  significantly  varies  with  weather
conditions,  on  rainy,  cloudy  days,  and at  night,  the  energy  input
from  sunlight  dramatically  decreases,  resulting  in  a  significant
decrease in clean water production. In this regard, exploring new
energy sources is of importance in the development of all-day, all-
weather,  and  all-season  interfacial  solar  evaporation  systems.
Other  than  extra  energy  harvest  from  the  surrounding  air  and
bulk  water,  Joule  heating  as  an  active  heating  approach could  be
considered  for  energy  supply  in  situations  where  clean  water  is
urgently  needed  but  sunlight  is  not  available.  In  addition,  using
phase change materials to store the surplus thermal energy during
the  daytime  and  release  it  at  night  is  also  a  potential  way  to
produce a considerable amount of water without light.

(2)  The  second  aspect  of  developing  next-generation  ISE
systems is  to  continuously  explore  novel  photothermal  materials.
Materials  with  excellent  solar-to-thermal  energy  conversion  and
low  emissivity  are  the  basic  consideration  for  constructing  solar
evaporators.  The  next-stage  development  of  photothermal
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Figure 11    (a) Diagram of bonding effect between functional groups and water molecules: (i) noncovalent interactions between water molecules and functional groups
in polymer chains and (ii) unique water state in hydrogels. Reproduced with permission from Ref. [216], © American Chemical Society 2019. (b) Schematic illustration
of highly efficient solar vapour generation based on tailored water transportation in hierarchically structured hydrogel: (i) The hydrogel consists of hierarchical porous
structures,  including  internal  gaps,  micron  channels,  and  molecular  meshes.  (ii)  Schematic  illustration  of  a  typical  solar  vapour  generation  system  and  the  water
confinement strategy. Reproduced with permission from Ref. [218], © Macmillan Publishers Limited, part of Springer Nature 2018. (c) Schematic illustration of the
vaporization enthalpy reduction caused by the synergy of  tailored water  states  in confined space and concave pyramid-shaped surface topography of  MXene/rGO-
embedded hybrid hydrogels. Reproduced with permission from Ref. [87], © American Chemical Society 2021. (d) Scheme of the COF/graphene dual-region hydrogel
for accelerating solar-driven water evaporation. Reproduced with permission from Ref. [236], © American Chemical Society 2022.

 
 

  Nano Research Energy  2023,  2: e9120062 11

 

 

https://www.sciopen.com | https://mc03.manuscriptcentral.com/nre | Nano Research Energy



materials needs to focus on maximizing the utilization of thermal
energy  in  both  macroscale  and  micro-nanoscale.  The  thermal
conductivity of photothermal materials also needs to be regulated
to optimize  the  thermal  energy distribution and utilization based
on  the  structure  of  the  evaporator  (2D  or  3D).  In  addition,
reducing  material  costs  is  also  essential  for  application-oriented
consideration.  Although  ISE  is  an  environmentally  friendly
technology  for  freshwater  production,  it  needs  to  be  more  cost-
effective to compensate for its low clean water production relative
to  osmosis  desalination.  Developing  strategies  for  more  vapor
output using less material is highly favourable [151].

(3)  Exploration  of  innovative  designs  of  photothermal
evaporators  will  be  an important  aspect  of  future  work.  Thermal
energy management, water flow regulation, and salt resistance are
all  related  to  the  evaporator  design.  A  desired  evaporator  should
be able to integrate multiple functions in one unit. For example, it
needs  to  maximize  energy  harvest  and  utilization  for  water
evaporation,  while  optimizing  the  water  flow  to  ensure  balanced
water  supply  and  evaporation,  as  well  as  avoiding  salt
accumulation on evaporation surfaces.

(4)  Improving  water  production  in  a  limited  space  is  another
important research direction. In an ISE system, water evaporation
and collection are two main parts. Rapid water evaporation is the
prerequisite  for  fast  water  collection,  but  it  does  not  mean  rapid
water collection.  Although very high solar evaporation rates have
been achieved,  highly  efficient  water  collection is  rarely  reported.
The  water  collection  rate  determines  the  actual  clean  water
production  in  interfacial  solar  evaporation  systems.  The  desired
ISE system should contain an excellent water evaporation module
and an efficient vapor condensing module in a compact space, so
that it has real potential for real-world application.

(5) Developing large-scale interfacial  solar evaporation systems
is  of  great  significance  for  practical  applications,  especially  for
seawater desalination and wastewater treatment. However, system
scaling-up is not to directly apply larger evaporation surfaces, since
it  has been demonstrated that with the increase of the size of the
evaporation  surface,  the  evaporation  rate  decreases.  Therefore,  a
better  choice  for  constructing  large-scale  interfacial  solar
evaporation systems is  to produce small  evaporators as units and
assemble them in appropriate patterns to form an interconnected
system.
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