Funding chlorine dispensers for community water supply through carbon finance

RWSN Forum, 29 November 2016

Chlorine Dispensers

- Problem
- Diarrhea is leading cause of childhood mortality

- Solution
- Treat with chlorine, which kills 99.9% of pathogens & reduces diarrhea by 40%
- Chlorine keeps safe from recontamination

 Chlorine exists, but people won't pay for it

- Free to users, resulting in 6x usage
- Bulk supply reduces costs to < \$0.50 per person at scale

• People forget to use it regularly

- Rigorously tested community education & local promoter
- Dispenser
 placement visual
 reminder

- Infrastructure solutions break
- Rural households
 excluded

- On-going service delivery & maintenance
- Rural distribution network

Project Area

Districts: Budaka, Busia, Butaleja, Kibuku, Manafwa, Namutumba, Mbale, Pallisa, Sironko, Tororo

dispensers: 5,655

people with access: 1.7 million

South Pole Group

Carbon Credits

- Greenhouse gas emissions:
 2.5 tCO₂ my flight to the RWSN Forum 66,915 tCO₂ of UNICEF (2014)
 48,710,000 tCO₂ of Switzerland (2014)
- Idea of carbon offsetting: Pay for a project that reduces emissions, e.g. forestry, cookstoves

- Different standards that certify emission reductions
- Emission reduction calculation based on approved methodologies
- CDM and Gold Standard registration based on AMS.III-AV (version 03)

Carbon Credits

- Greenhouse gas emissions: Methodologies are approved by the carbon standard 2.5 tCO₂ my flight to the RWSN Forum 66,915 tCO₂ of UNICEF (2014) 48,710,000 tCO₂ of Switzerland (2014)
- Idea of carbon offsetting: Pay for a project that reduces emissions, e.g. forestry, cookst
- Tradable unit: carbon

Emiss

- Different stan
 - *iculation based on approved methodologies*

Standard registration based on AMS.III-AV (version 03)

Baseline Emissions

Boiling of water: 5,300 L ≈ 1 tCO₂

Stoves Used

- Firewood use: > 95%
- Use of three stone fires or unimproved stoves: > 90%
- Assumed efficiency of unimproved stoves: 10%

Emission calculation

- Specific Energy Consumption (heating the water from 20°C to 100°C and boiling for 5 min): approx. 3,400 kJ/L
- Emission factor: 81.6 tCO2/TJ
- Fraction of non-renewable biomass (Uganda): 82%

Baseline Emissions

Boiling of water: 5,300 L \approx 1 tCO₂

Stoves Used

- Firewood use: > 95%
- Use of three stone fires or unimprove
- Assumed efficiency of unimprove •

Emission calculation

- Specific Energy Cop 20°C to 100°C >
- Emission far
- Fraction

Suppressed Demand

Source: DHS Uganda, 2011

Project Monitoring (1)

The total amount of safe drinking water consumed needs to be established.

Chlorine consumption

- Records are collected for all chlorine deliveries to a dispenser (5 L chlorine jerricans and 3 ml chlorine per 20 L water = 33,333 L per delivered 5 L jerrican)
- Deduction of % chlorinated water used for other purposes than drinking
- Cap at 3.5 L per person with access to a dispenser (around 20 L per household per day)

Water quality

- Water quality tests at household level
- Total chlorine residual is tested in stored drinking water to determine users
- E. coli tested using the IDEXX Quanti-Tray method
- The applied methodology accepts a quality threshold < 10 CFU/100 ml for E.coli

Project Monitoring (2)

Monitoring period	# Functional Dispensers	Chlorine consumption (5 L jerricans)	Water quality (< 10 CFU/100 ml for E.coli)
1st monitoring period (17/07/2014 to 31/01/2015)	1,049 (out of 1,150)	4,983	93.5%
2nd monitoring period (01/02/2015 to 30/09/2015)	2,023 (out of 2,163)	14,055	92.6%
3rd monitoring period (01/10/2015 to 31/05/2016)	2,105 (out of 2,163)	12,350	95.9%

The quantity of consumed safe water can be calculated!

The quarter of consumed safe water can be calculated!

Carbon Credit Sales

First carbon credits issued in April 2016.

The carbon revenue allows Evidence Action to provide free access to chlorine for rural communities.

Sales of carbon credits

- Issued carbon credits need to be sold in order to generate revenue
- To sell carbon credits a broad network of corporate and public buyers is essential
- Carbon credits from attractive projects can be sold for above market prices
- Still, even after the successful outcomes in Paris the future of the CDM is uncertain
- Preferably a forward contract (with pre-defined carbon credit volume and price) can be signed with a client.

Revenue

- No "rules" about how carbon revenue is used
- Evidence Action uses carbon revenue for on-going O&M of the filters
- Carbon transaction costs are similar to NGO's fundraising expenditures

Conclusions

- Carbon finance is able to cover costs that traditional donors and governments are often not willing to cover, e.g. operation and maintenance costs.
- The current situation of the carbon markets (i.e. prices below 1 USD per carbon credit) poses a risk to financing the operation and maintenance.
- Results-based finance: 5,300 safe water = 1 tonCO₂, carbon credit price gives also a price to water

Why is "Carbon for Water" Relevant?

- 1. Under the SDGs water quality is given increased attention and it can be expected that decentralized water treatment options will gain traction
- 2. The rural poor and most disadvantaged are most likely not able to cover the full costs of water treatment and some form of subsidy will be required.
- 3. Results-based finance using an outcome-indicator (e.g. water free of faecal contamination at the point of use) provides possibly the best incentives for implementing cost-effective measures to reach a maximum number of people with a given budget.
- 4. Carbon for water projects provide first concrete examples of results-based funded interventions and could be further expanded, or the learnings used for the development of similar new funding schemes.

Let's Meet & Discuss!

- Interested to compensate your organization's carbon footprint with high-quality carbon credits?
- Interested to register your own water project under a carbon standard?
- Interested to explore results-based financing mechanisms beyond carbon for safe water?

Contacts

thesouthpolegroup.com

Lars Osterwalder Senior Consultant I.osterwalder@thesouthpolegroup.com

www.evidenceaction.org

Andy Narracott Deputy Director, Global Safe Water andy.narracott@evidenceaction.org

