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ABSTRACT
Sediment transport in the ejector is highly stochastic and non-linear in nature, and its accurate
estimation is a complex and challenging mission. This study attempts to investigate the sediment
removal estimation of sediment ejector using newly developed hybrid data-intelligence models.
The proposed models are based on the hybridization of adaptive neuro-fuzzy inference systems
(ANFIS) with different metaheuristic algorithms, namely, particle swarm optimization (PSO), genetic
algorithm (GA), differential evolution (DE), and ant colony optimization (ACO). The proposed mod-
els are constructed with various related input variables such as sediment concentration, flow depth,
velocity, sediment size, Froude number, extraction ratio, number of tunnels and sub-tunnels, and
flow depth at upstream of the sediment ejector. The estimation capacity of the developed hybrid
models is assessed using several statistical evaluation indices. Themodeling results obtained for the
studied ejector sediment removal estimation demonstrated an optimistic finding. Among the devel-
oped hybrid models, ANFIS-PSO model exhibited the best predictability potential with maximum
correlation coefficient values CC Train = 0.915 and CCTest = 0.916.
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1. Introduction

1.1. Research background

Sediment control in irrigation canals is considered one
of the most challenging issues since the advent of diver-
sion headworks, because an excessive deposition of silt
leads to the reduction of the carrying capacity of the canal
(Vázquez-Méndez et al., 2018). These results to farmers
not getting sufficient water at the tail end of the canal to
irrigate their crops (Depeweg et al., 2014; Lawrence &
Atkinson, 1998).

To avoid problems caused by sedimentation, a number
of methods of silt control have been developed (Chavar-
rías et al., 2019). They are generally categorized into
two: the preventive and the curative methods. Preventive
methods address problems, even before they start form-
ing or become serious. For these methods, tunnel-type
excluder devices (Kothyari et al., 1992; Tiwari, Sihag, and
Das, 2019), have beenmainly used. Staggered tunnels are
employed at the intake of the offtake canal at the bed of
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the river, and a relatively silt-free upper layer of water is
allowed to enter the offtake canal. One disadvantage of
these devices is that, however, efficient they are; a large
amount of silts is bound to enter the offtake canal. This
is due to the turbulence created at the mouth of the off-
take canal at the sediment excluder, which causes and
keeps sediment materials in suspension. Curative meth-
ods, on the other hand, correct the problems after they
have started. Silt ejectors are usually used for the offtake
canal at a suitable distance downstream of the head reg-
ulator (Lisé-Pronovost et al., 2019). Depending on the
situation and position of the problem, different types of
silt ejectors are used to mitigate and manage silt mate-
rials in the canal. A traditional type of settling basin is
used where there is the scarcity of water, as without frac-
tion of water loss, it can be successfully employed (Garde
et al., 1990; Raju et al., 1999). However, this device has
several disadvantages, because it requires construction in
a large area, a longer residence period to settle, and a
periodic physical cleaning which interrupts the farmers’
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work. These drawbacks have been addressed by refining
traditional settling basins into vortex settling basins, as
discussed and analyzed by Athar et al. (2003) and Paul
et al. (1991). However, this fluidic structure also suffers
from two shortcomings: it works only when discharge is
low, and it removes the finest particles which are ben-
eficial for crop growth. Vortex tube sand traps remain
ineffective in case of higher suspended load as it removes
the bed load only from the flow (Dashtbozorgi & Asareh,
2015a, 2015b; Lawrence & Atkinson, 1998; Moradi et al.,
2013; Tiwari, Sihag, Kumar, et al., 2020).

The tunnel-type sediment ejector has advantages over
other devices due to its simple construction and effective
function. At the same time, it does not suffer from the
same limitations as other devices as long as water avail-
ability is not an issue (Kothyari et al., 1994). It comprises
of a flat rooftop above the canal bed, which divides the
silt-loaded lower portion from the upper portion. Under
the roof slab, tunnels carry the bottom layers of sedi-
ment through escape routes to the river downstream of
the diversion headworks, while the comparatively silt-
free upper part of the water is allowed to cross over
the rooftop to the canal downstream of the sediment
ejector.

1.2. Basic hydraulic principle

In a moveable bed channel, silt moves as the suspended
load and the vertical turbulent component of the stream
force up fine materials, which are kept in suspension and
transported by the current of the stream. Heavier parti-
cles that cannot be forced into suspension moves along
the surface of the bed by either sliding or bouncing. How-
ever, there is a very fine boundary line between the bed
and suspended sediments. This is because of the contin-
uous exchange of particles floating up from and sinking
down to the bed of the channel. The intensity of silt mate-
rials in the lower part is higher than that of the top part.
As a consequence, the silt intensity is decreased in the
canal downstream of sediment ejector device.

1.3. Present state of knowledge, novelty of the work
and objective

Sediment ejectors have been examined by the Indian
Standard (IS) 6004-1980 (Dhillon et al., 1977; Garde
& Pande, 1976). However, all these studies are depen-
dent entirely on the physical model works where only
hydraulic principles have been used. However, the exact
estimation of tunnel ejector sediment removal efficiency
remains inconclusive, because traditional models do not
consider the complexity involved with fluid current in
the tunnel ejector. Recently, soft computing models have

been utilized massively in the field of water resources
and hydraulics engineering, where knowledge of nei-
ther the mechanisms involved nor the physical model
study in laboratory and field are required (Ansari, 2014;
Ansari & Athar, 2013; Singh et al., 2018; Tiwari, Sihag,
Kumar, et al., 2020). Artificial Intelligence (AI) models
perform extraordinarily in mapping the actual mech-
anism of the simulated hydraulic applications (Yaseen,
Sulaiman, et al., 2019). However, the implementations of
the AI models are limited for modeling hydraulic engi-
neering problems. Hence, finding new developed model
is garnered great interest with hydraulic engineering
groups.

Among several AI models, the adaptive neuro-fuzzy
inference system (ANFIS) is one of the most reliable and
robust predictive models applied in the field of water
resources and hydraulic engineering (Gholami et al.,
2017; Safavi et al., 2015). ANFIS model is associated
with the limitation of the internal parameters tuning
and thus hybridization with metaheuristic optimization
algorithms is the solution for this limitation (Yaseen,
Ebtehaj, et al., 2019; Yaseen, Mohtar, et al., 2019). Tak-
ing into account that the performance of the hybrid
ANFIS models attained remarkable performance of the
prediction accuracy over the standalone ANFIS model
for diverse hydraulic engineering problems (Azimi et al.,
2017; 2018; Gholami et al., 2018), the primary aim of
this work is to develop hybrid predictive models based
on the hybridization of ANFIS model with different
metaheuristic algorithms. ANFIS-metaheuristic mod-
els with different input parameters, including sediment
concentration, velocity, sediment size, Froude number,
extraction ratio, number of tunnels and sub-tunnels,
and flow depth at upstream of sediment ejector were
trained and evaluated in terms of statistical evaluation
indices to find the best estimator models. The perfor-
mance accuracies of the proposed hybrid models are
compared with modern ANFIS, which is trained by par-
ticle swarm optimization (PSO), genetic algorithm (GA),
differential evolution (DE), and ant colony optimiza-
tion (ACO). The selection of those metaheuristic algo-
rithms was owing to their scientific successful imple-
mentation in diverse hydraulic and sediment problems
(Chen et al., 2017; Panahi et al., 2020; Ray et al., 2021;
Sharafati et al., 2019). This research is considered as the
first from type on the implementation of hybrid ANFIS
models for estimating tunnel ejector sediment removal
efficiency.

The structure of the manuscript is designed as fol-
lows. Section 2 presents the essential parameters influ-
encing the removal efficiency. Section 3 reports the
overview of the applied predictive models. Section 4
exhibits the modeling development of the hybrid ANFIS
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Table 1. Correlation test between input variables & sediment removal efficiency.

Rh
V
U∗

Q
VD2

D
dn

H1
D M S V

ωj
Ex C Fr η

Rh 1.00
V
U∗ 0.042 1.00
Q

VD2
−.110 −0.375 1.00

D
dn −.128 .025 −.025 1.00
H1
D −0.924 −.013 0.140 0.144 1.00
M −0.117 0.170 0.036 −0.014 0.110 1.00
S 0.063 0.00 0.112 0.037 −0.057 −0.031 1.00
V
ωj

.117 .368 −.104 −.853 −.117 .085 −.019 1.00

Ex 0.002 0.026 −0.056 0.028 −0.016 0.054 0.007 −0.023 1.00
C −0.080 −0.060 −0.201 −0.093 0.104 0.176 0.014 0.057 −0.038 1.00
FR 0.045 0.882 0.004 0.042 −0.016 0.146 0.047 0.320 0.051 −0.179 1.00
η 0.096 −0.012 0.053 −0.644 −0.147 −0.050 −0.09 0.502 0.141 −0.414 0.029 1.00

models. The application result and discussion are pre-
sented in Section 5. In the final section, the conclusion is
stated.

2. Parameters affecting the removal efficiency
of settling basins

In field and laboratory studies, the most important
parameters affecting the removal efficiency include the
parameters representing the sedimentation character-
istics of the hydraulic flow conditions as well as the
geometrical characteristics of the flume or canal (Athar
et al., 2005; Athar et al., 2002; Garde et al., 1990;
Mashauri, 1986). For this purpose, a relation with
regard to the variables used for the research is pre-
sented in the following in order to express the relation-
ship between removal efficiency and effective variables
on it:

η(%) = f (C,D,Q, dn, Fr,H1,m, ex, s,V , b) (1)

In the above equation, the variables represent sediment
concentration (C), flow depth (D), discharge (Q), sed-
iment size (dn), Froude number (Fr), flow depth at
upstream of the settling basin (H1), the number of main
tunnels (m), opening ratio (ex), number of secondary
tunnels (s), velocity (V), and the width of the flow (b).

Dimensional analysis was also applied to investigate
the dimension of variables involved in the removal effi-
ciency. Using the Buckingham π theorem, the rela-
tionship between the removal efficiency with the effec-
tive parameters on it is expressed in the following
equation:

η(%) = f
(
Rh,

V
U∗

,
Q

VD2 ,
D
dn

,
H1

D
,m, s,

V
ωj

, ex,C, Fr
)

(2)

In the equation above, the additional variables repre-
sent hydraulic radius (Rh), shear velocity (U) and particle
falling velocity (ωj).

The 198 laboratory data is collected from phys-
ical model that conducted by Singh (2018). These
experiments carried out in rectangular flume with
dimensions of 0.45× 1.0× 24m in National Institute of
TechnologyUniversity, India. The sediment trapping effi-
ciency was investigated in Different flow conditions, sed-
iment properties, extraction ratio and combinations of
main and sub tunnels. The physical models were pre-
pared by re-circulation system, stilling chamber and baf-
fle wall for flowing water through the flume and decreas-
ing its turbulence conditions. In addition, a transition
zone is designed to neglect the impacts of turbulent
flows. A sediment ejector was used at the appropri-
ate distance from inlet of flumes, also, different num-
bers of tunnels and sub tunnels were fixed to perform
experiments.

The input data were used from a laboratory study car-
ried out by combining the variables for the estimation of
the removal efficiency which has been done based on the
correlation of non-dimensional laboratory variables to
the target variable (Table 1). The variables with the least
correlation were then eliminated, and new combinations
were defined from the correlation test. Due to the cor-
relation ratio of each variable to the actual target values
in the laboratory, the variables of the data were omitted,
and the combination of the new variables was obtained
as shown in Table 2. On the other hand, the input combi-
nations defined in present study are provided based on
the correlation coefficient between the target and pre-
dictive variables. In this way, the first combination (M1)
includes all of the predictive variables. The second com-
bination (M2) comprises all of the predictive variables
except the input variable (V/U∗) which offers the lowest
correlation (r = −0.012)with the target variable. Hence,
the last combination (M11) includes only the predictive
variable (D/dn) which provides the highest correlation
(r = −0.644).

In this study, almost 75% (152 samples) of the data is
used as the train data, and the remained (46 samples) is
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Table 2. Input variables combination for prediction of sediment removal efficiency.

Input combination of non-dimensional variables

Models Rh
V
U∗

Q
VD2

D
dn

H1
D M S V

ωj
Ex C Fr

Model-1 � � � � � � � � � � �
Model-2 � – � � � � � � � � �
Model-3 � – � � � � � � � � –
Model-4 � – � � � – � � � � –
Model-5 � – – � � – � � � � –
Model-6 � – – � � – – � � � –
Model-7 – – – � � – – � � � –
Model-8 – – – � � – – � – � –
Model-9 – – – � – – – � – � –
Model-10 – – – � – – – � – – –
Model-11 – – – � – – – – – – –

Table 3. Range of input parameters employed in the current
study.

Parameters Training data Testing data

Rh 0.90 0.90
V
U∗ 0.851–3.193 0.957–1.809
Q

VD2
0.519–1.646 0.972–1.555

D
dn 775.802–2000 705.882–2000
H1
D 0.23 0.23

M 3–5 3–5

S 3–5 3–5
V
ωj

0.212–2.025 0.212–1.913

Ex 15.38–30.25 16.6–30.25

Ppm 48.414–370.370 54.869–284.900

Fr 0.047–0.105 0.052–0.099

used for testing phase. The ranges of the input parameters
in both stages are presented in Table 3.

3. Applied predictive models

3.1. Adaptive neuro-fuzzy inference systems (ANFIS)

ANFIS is a soft computing technique that integrated neu-
ral networks and fuzzy inference systems. An ANFIS
model makes use of neural networks for solving non-
linear problems and their ability to recognize relations
between variables. It also makes use of fuzzy inference
systems for reasoning in complicated environments using
the principles derived from human decision-making
(Sharafati et al., 2019). ANFIS models have been already
used as reliable prediction tool for scouring, precipitation
and water level monitoring (Sharafati et al., 2019; Yaseen,
Sulaiman, et al., 2019).

In summary, an ANFIS model applies if/then rules for
expressing nonlinear relations between inputs and out-
puts. With fuzzy logic, each input (x and y) is defined as
fuzzy set (A and B) through membership functions. The

if/then rules are expressed as follows:

Rule 1 : if x is A1 and y is B1 then f = P1x+ q1y+ r1
(3)

Rule 2 : if x is A2 and y is B2 then f = p2x+ q2y+ r2
(4)

where Ai and Bi are fuzzy sets, f represents the out-
put of the fuzzy rules and pi, qi and ri are parame-
ters that are ‘tuned’ in the training stage. In train stage
ANN is adjusted the mentioned parameters using back-
propagation and least square methods. The adjustment
of the parameters is an iterative process and stops once
defined criteria satisfied. Generally, the structure of an
ANFIS model has five layers (Figure 1), described as
follows:
Fuzzification layer (Layer 1), with two main tasks:

1. Computing input variables of membership function
MF

2. Generating the input variables for the next layer

The results of the first task are expressed asO1
i = μAi(x).

μ(x) is bell-shaped function and in this study, the Gaus-
sian membership function (GMF) is employed to fit
appropriate relations between inputs variables and tar-
get one (trapping efficiency). The GMF can be described
through a relation as follows:

μAi(x) = e
−(x−c)2

2σ2 (5)

where x, c and σ are input parameter, mean of input
parameter and its standard deviation, respectively.

Rule layer (Layer 2), which determines the firing
strength ωi of each rule via multiplication of input sig-
nals. The main task of this layer is finding the best rule
that relates the inputs. this layer computed as follows:

O2i = ωi = μAi(x)μBi(y)fori = 1, 2 (6)

whereO2i andωi are output of layer 2 and firing strength,
respectively.
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Figure 1. Schematic view of the ANFIS structure.

Table 4. Description of the ANFIS parameters.

Parameter
description

Parameter
value

Number of Clusters 5
Train Epoch 250
Train-Error Goal 0
Train-Initial Step Size 0.01
Train-Step Size Decrease 0.90
Train-Step Size Increase 1.1

Normalization layer (Layer 3), which normalizes the
firing strengths obtained from each rule in the previous
layer as follows:

O3i = ωi = ωi∑
ωi
= ωi

ω1 + ω2
for i = 1, 2 (7)

Defuzzification layer (Layer 4): The node function of
each adaptive node computed via output values that
obtained from ‘if–then rules’ as follows:

O4i = ωi(aix+ biy+ ci) (8)

where {ai, bi, ci} are defuzzification parameters that
determined in training stage.

Output layer (Layer 5): The weighted average of over-
all outputs is identified in this layer as follows:

O5,i =
∑

ωifi (9)

The structure of ANFIS model is presented in Figure 1.
In addition, the adjustable parameters of ANFIS is

reported in Table 4.

3.2. Ant algorithm

This algorithm is categorized as computational intelli-
gence or swarm intelligence. It is a type of intelligence
derived from the congestion of a number of factors. The
key strength of this model is associated with congestion
of members, therefore, it doesn’t depend on intelligent of
individual.

The key factors in swarm intelligence include:

i. Population
ii. Interaction between population members: This

algorithm is unlike genetics, where there is no swarm
intelligence because there is no behavioral interac-
tion between population members

iii. Communication: Any collaboration requires the
communication of population members

iv. Information exchange
v. Information flow
vi. Themembers of the populationmust adhere to their

rules.

If there is a flow of information and self-discipline, there
must be swarm intelligence. Ant behavior was first stud-
ied by a scientist named Goss using Argentine ants. In
this experiment, different paths which an ant passed to
reach its prey were studied. In this experiment, the ants
start in the nest, and one of the paths is shorter than
the other. The ants do not know the environment at
first. They release a substance called pheromone on their
path. In the shorter paths, where more ants move, the
pheromone concentration is higher. Ants are naturally
attracted to pheromones. Little by little, they achieve their
permanent system and gradually converge to the short
path. It should be noted that the choice of the shortest
path can be possible due to the congestion of the ants
rather than their individual existence.

The pheromone’s effect upon the colony of ants acts
like the numerical information distributed throughout
the answer space, and the ants use it when they run
the algorithm in order to share their experiences with
others. Artificial ants which are used in the ant colony
produce random responses using the effective procedures
in such a way that they alternately generate responses
by adding the components of a solution to the partial
response. Therefore, they use the heuristic information
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within the problem, the effects of synthetic pheromones
that change during the process of solving, and the expe-
riences gained by the search agents (the ants) in order
to create the answer for the problem. The route that ant
chooses to move from a nest toward food depends on
amount of pheromones secrete in the route and the infor-
mation available for the cost of selecting that route which
is defined in the following way:

pki,j =
⎧⎨
⎩

(τi,j)
α(ηi,j)

β

∑
(τim)

α(ηim)
β

⎫⎬
⎭ (11)

In the above relation, pki,j is the probability of choosing
the available ant-k paths to move from point i to point
j. The variable τi,j is generally equal to the amount of
pheromone secreted by the ants on the route from point i
to point j. The value of τi,j is expressed as the addition of
the amount of pheromone secreted in the preceding steps
to the amount of pheromone secreted by each ant	τ ki,j on
the route from point i to point j.

τi,j← τ ∗i,j +
∑

	τ ki,j (12)

as a dependent variable is the experience gained by ants
ηi,j, which is defined in the following way:

ηi,j = 1
F(x)

(13)

In the above relation, F(x) is the value of the cost func-
tion produced in each ant’s past experiences. Moreover,
the variables α, β are the weighting coefficients of each
one of the pheromone and experience variables. The vari-
ables ηim and τim are the mean pheromones and cost

function, respectively. In each iteration, a number of
wrong answers must be eliminated. Hence, a variable
named ‘evaporation coefficient ρ’ influences the amount
of pheromone secreted in each path and k ant:

	τ ki,j =
ρ

(1− ρ)J(ψ t)
(14)

In the equation above, the variables represent the evap-
oration coefficient (ρ) and the cost function (J(ψ t))
obtained from the experience of the best ant which has
passed a specific route. The variable τ ∗i,j is the amount
of pheromone accumulated in each route in the previous
steps. It is defined in the following way:

τ ∗i,j← (1− ρ)τi,j (15)

In general, the ant algorithm flowchart is presented in
Figure 2(a).

3.3. Particle swarm algorithm

This algorithm was first proposed by Kennedy and
Eberhart. They named this algorithm particle swarm
optimization (PSO). This algorithm is a social search
algorithm that is modeled on the social behavior of bird
flock. Initially, the algorithm was designed to discover
patterns dominating on the simultaneous flight of birds
and the sudden change of directions in the search space.
In AF lock of birds, each bird always flies towards the
bird leader. If the bird leader deviates, the others will
have the same deviation. The leader is in the best posi-
tion. In this algorithm, every particle (a member of the
population) looks for the optimal point. Therefore, it
moves under any circumstances; hence, this movement is

Figure 2. Flowcharts of the optimization models, (a) ACO Flow chart, (b) PSO Flow chart, (c) GA Flow chart, (d) DE Flowchart.
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Figure 2. Continued.

rapidly done. Like other population based algorithms, the
PSO algorithm uses a set of possible answers, and these
responses continue until an optimal response is found,
and the completion conditions of the algorithm are pro-
vided. In this method, each response x is represented as a
particle in the genetic algorithm, each response is called a
chromosome, and like all other algorithms, a basic popu-
lation must be formed. In this way, the velocity equation
guarantees the movement of particles toward the optimal
area. This equation is usually based on three basic ele-
ments: (a) the cognitive component: personal best (pbest)
is the best particle status; (b) the collective component:
global best (gbest) is the best particle which has existed so
far; and (c) Velocity (Vi).

In the simulation of this algorithm, the behavior of
each particle can be influenced by pbest in a specific
neighborhood, the best solution that the particle has ever
had, and the gbest is the best particle compared to other
particles.

Vi(t + 1) = wVi(t)+ C1r1(Pi(t)

− xi(t)+ C2r2(g(t)− xi(t) (16)

xi(t + 1) = xi(t)+ Vi(t) (17)

The PSO algorithm flowchart is presented in Figure 2(b).

3.4. Genetic algorithm

The general structure of the genetic algorithm was ini-
tially introduced by Goldberg in 1989. The genetic
algorithm is a random search technique based on the nat-
ural selection mechanism. The genetic algorithm begins
with an elementary answer set called the population.
Each member of the population is called a chromosome

Xn, (Xn ∈ R), and an agent for finding the answer to
the problem is under investigation. Each chromosome
includes a sequence of numbers called a gene.

X = [X1.X2, . . . ,XN] (18)

Gene values that actually represent the value of decision
variables can be defined as real numbers or binary system.
The basic differences of genetic algorithm from other
common optimization algorithms and search structures
include:

i. The genetic algorithm does not work directly with
the answers themselves but deal with the codes
which are its agents.

ii. The genetic algorithm searches for a set of answers
instead of a single answer.

iii. The genetic algorithm uses fitting function informa-
tion instead of derivatives or other auxiliary infor-
mation.

iv. The genetic algorithm uses probabilistic selection
rules instead of definitive rules.

� Selection

In the genetic algorithm, the selection is based on
the principle of Darwin’s natural selection. The crite-
ria, methods and thresholds of selection are considered
themost important components and processes in genetic
algorithm. On the other hand, by reducing the selection
pressure, high generation dispersion reduces the pos-
sibility of reaching the final answer. There are various
methods for the selectionmechanism, including ranking,
competition and roulette wheel. In this study, the roulette
wheel selection is employed.
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� Crossover

Genetic crossover is also one of the functions of
genetic algorithm, and it is applied by combining parental
genes; new offspring will appear in order to attend the
next generation. This process can be performed in differ-
ent forms. Consider parental genes as X and Y:

X = [X1,X2, . . . ,Xn] (19)

Y = [Y1,Y2, . . . ,Yn] (20)

And by selecting K ∈ [1, n] as the random point of
crossover, the offspring can be expressed in the following
way:

{
Xnew=[X1,X2,...,XK ,YK+1,YK+2,...,Yn]
Ynew=[Y1,Y2,...,YK ,XK+1,XK+2,...,Xn] (21)

Ynew andXnew which are new offspring from the X and
Y parents, respectively, have their corresponding genetic
attributes.

� Genetic mutation

Amutation is an operator that causes changes in different
chromosomes. One simple way to make a chromosome
mutation is to change one or more genes at random.

Like crossover, a chromosome is hypothetically
selected, and the mutation is performed on it. The chro-
mosome mutation is performed in the following way:

X′ = [X1, . . . ,X′K , . . . ,Xn] (22)

In the above relation, X′K is a random gene characteristic
in the range [XL

K ,X
U
K ]. The values of XL

KandX
U
K are the

minimum andmaximum boundary values associate with
the variable, respectively. TheX′K gene can be replaced by
either XL

K or XU
K with equal probability.

In the genetic algorithm, mutation plays a vital role in
replacing lost genes into the population so that it can be
present in a new format, andwith new genes as a response
that was not present in the primitive population. The GA
flowchart is presented in Figure 2(c).

3.5. Differential evolution algorithm

The DE algorithm was first introduced by Storn and
Price (1997) which is a random population algorithm.
The main feature distinguish this algorithm other the
other metaheuristic algorithms, is the differential muta-
tion (Takagi & Sugeno, 1985). The main emphasis on
the development of the DE algorithm is to solve the
complex optimization problems associated with the lack
of its local search solution. In addition, the order of
the selection operator, mutation and transplantation. In

other words, in this algorithm, the mutation operator
is used before the crossover operation. DE algorithm
starts its process mechanism by producing random
population that presents a symbol of solution for the
studied problem. The DE flowchart is presented in
Figure 2(d).

4. Models hybridization

Researchers have combined different algorithms to over-
come the unique limitations of each algorithm. In the first
group, the combination of evolutionary algorithms acts
as input preprocessors, and another intelligent approach
is used to find the best possible answer. In the second
group, another intelligent approach processes the data,
and then the best possible answer is obtained by evolu-
tionary algorithms. In the third group, both algorithms
work together to optimize and adjust each other’s param-
eters. In the fourth group, the intelligent approach is used
solely to prepare and determine the necessary parame-
ters in the evolutionary algorithm. Indeed, the standalone
estimators such as support vector regression, ANFIS and
ANN employed classical approaches such as gradient
decent to adapt their adjustable parameters. In some
case, especially, when numbers of input variables are
increased, they encounter with different difficulties such
as high-cost of computation or generating not precise
results. In this regard, there is strong need to use differ-
ent approaches such as evolutionary algorithms (EA) for
enhancing their capabilities of standalone estimators to
find best solutions. These models are dynamic and could
improve the flexibility of standalone models for tacking
complex problems. However, there are many types of EA
algorithms and they use different paradigms to solve a
problem. Some of these algorithms are trapped in local
solution while some find the best solution easily with less
cost of computation. This study strongly focused to find
best EA model to enhance the capabilities of standalone
ANFIS.

The ANFIS includes two important sections that
named antecedent and consequent sections. In stan-
dalone ANFIS, the back propagation neural network is
employed to find appropriate values for parameters of
each sections. In antecedent section, parameters inmem-
bership function which discussed in Section 3.1 is tuned
by evolutionary algorithms. In addition, the evolutionary
algorithm attempts to find optimumvalues of consequent
section which incorporate with parameters pi, qi and ri
in relation 9. The computations are iterative and will
be terminated after termination criteria is satisfied. The
hybridization flowchart is presented in Figure 3.

There are different methods for the hybridization of
the algorithms:
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Figure 3. Flowchart of the hybridized ANFIS.

i. The solutions obtained from the initial population
of evolutionary algorithms can be obtained by the
discovery method in the solutions.

ii. In some methods, the solutions obtained by an
evolutionary algorithm can be improved by local
search. These types of algorithms are known as
privileged algorithms.

iii. The solution of the methods is indirectly given
to generate a unique decoding algorithm by map-
ping the indirect solutions. The mapping method
is performed in such a way that the decoding

algorithm extracts the problem characteristics, and
then the super-innovative algorithm starts to solve
the problem.

iv. Some methods extract the solution to the prob-
lem by variable operators based on information. For
example, in the combination of some algorithms,
the secondary population is better than the integra-
tion and combination of the primary population.

In this section, ANFIS is combined with evolutionary
algorithms mentioned in the previous section in the
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Table 5. The user-defined parameters of the optimization
methods.

Evolutionary
algorithm

User defined
variables

Variable
value

Genetic Algorithm Maximum Number of Iterations 1500
Primary Population 30
Cross over coefficient 0.70
Number of offspring 21
Mutation coefficient 0.10
Mutation Percentage 0.50
Selection Pressure 8

Particle Swarm Optimization Maximum Number of Iterations 1500
Primary Population 30
Inertia weight coefficient 1
Inertia weight damping Coefficient 0.99
Personal Learning Coefficient 0.90
Global Learning Coefficient 2

ACO Maximum Number of Iterations 1500
Primary Population 30
Intensification Coefficient 0.50
Deviation-Distance Coefficient 1

Differential Evolution Lower Bound of Scaling Coefficient 0.20
Upper Bound of Scaling Coefficient 0.80
Crossover Probability 0.10

training stage. The stages of combining ANFIS with these
algorithms are expressed in the following:

i. Receiving training data: In this step, laboratory data
are entered into the model in the percent of 75%
and 25% in training and testing ways and randomly
selected.

ii. Creating a fuzzy base system (FIS).
iii. Adjusting the parameters of fuzzy with respect to

the performance error indices by the evolutionary
algorithms.

iv. Choosing the best fuzzy system with the best
parameters and the least error as the final result.

The user-defined parameters of the optimization meth-
ods are reported in Table 5.

The developed hybridized ANIFS models were
assessed using several statistical indices including corre-
lation coefficient (CC), root mean square error (RMSE),
scaled root mean square error (SRMSE) and Willmott
Index (W-Index). The mathematical formulation can be
expressed as follows:

CC =

∑Ns
j=1((SR)obs − (SR)obs)
((SR)pre − (SR)pre)√√√√∑N
j=1 ((SR)obs − (SR)obs)

2

∑N
j=1 ((SR)pre − (SR)pre)

2

(23)

RMSE =
√√√√ 1

N

N∑
j=1

((SR)obs − (SR)pre)2 (24)

SRMSE =

√√√√ 1
N

∑N
j=1 ((SR)obs − (SR)pre)2

(SR)obs
(25)

W - Index = 1−

⎡
⎢⎢⎢⎣

∑N
i=1 ((SR)obs − (SR)pre)2∑N
i=1(|(SR)pre − (SR)obs|
+|(SR)obs − (SR)obs|)2

⎤
⎥⎥⎥⎦ (26)

where N is the number of the dataset, (SR)obs(SR)pre
are presented the observed and the predicted sediment
removal. (SR)obs and (SR)pre are the mean values of the
observed and the predicted sediment removal

Figure 4. Scatter plots presentation between the observed and predicted values of computed sediment removal efficiency for the best
input combination overtesting phase.
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Table 6. The statistical performance metrics for the best results
of each applied models.

Technique
Model

combination RMSE CC W-Index SRMSE

Train Stage
ANFIS 5 6.203 0.880 0.933 14.894
ANFIS-ACO 9 7.253 0.834 0.906 17.415
ANFIS-DE 2 7.444 0.821 0.895 17.873
ANFIS-GA 9 7.050 0.842 0.910 16.928
ANFIS-PSO 1 5.276 0.915 0.954 12.667
Test Stage
ANFIS 5 6.62014 0.897 0.942606 15.2752
ANFIS-ACO 9 7.4758 0.86258 0.91921 17.2495
ANFIS-DE 2 7.93087 0.845202 0.902749 18.2996
ANFIS-GA 9 7.09932 0.877474 0.927546 16.3809
ANFIS-PSO 1 6.17669 0.91615 0.944167 14.252

5. Results and discussion

In this study, dimensionless variables (C, Fr,m, ex, s,Rh,
(V/U∗), (Q/VD2), (D/Dn), (H1/D), (V/ωJ)) were used
to predict the removal efficiency. The results and dis-
cussion of ANFIS model performance and its various
hybrid versions (ANFIS-PSO, ANFIS-GA, ANFIS-ACO,
ANFIS-ACO and ANFIS-DE) were presented in this
section. To investigate the ability of each model in
predicting the depth of hydrodynamic scour and the

capabilities of the improved ANFIS models in predict-
ing the depth, several computed statistical indices were
adopted for the model’s evaluation. RMSE represents the
standard deviation of the remains (the difference between
the predicted values relative to the observed data). This
criterion states howmuch data is centered around best fit
line. CC is an index of how closely the two variables are
related to each other. The W-Index computes the agree-
ment between predicted and observed data, and SRMSE
is the normalized RMSE.

The best performance results of each of the mod-
els used in the training and testing stages were tabu-
lated in Table 6. The measurement error in the training
stage shows that the ANFIS-PSOmodel predicts removal
efficiency better than other models. The values of the
performance indices in the training stage in the ANFIS-
PSO model indicate that this model has the lowest
RMSE = 5.276 and the highest CC = 0.915. This model
is more powerful than the standalone ANFISmodel. This
best can be explained due to the feasibility of the of
the PSO metaheuristic algorithm for tuning the essen-
tial internal parameters of the ANFIS model to attain a
reliable learning process for studied problem. However,
the non-hybrid ANFIS model also performs better than

Figure 5. Heat Map performance presentation of the hybrid predictive model overtesting phase.
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Figure 6. Normalized Taylor diagrams for the predicted and observed standardized sediment removal efficiency over testing phase.

other models. During the training stage, in general, the
models can be ranked from the best to the worst in this
way: ANFIS-PSO, ANFIS, ANFIS-GA, ANFIS-ACO and
ANFIS-DE.

Over the models testing stage, the ANFIS-PSO model
once more predicts the removal efficiency with respect
to the values of RMSE = 6.176 and W-Index = 0.944.
In addition, considering the correlation coefficient value,

Figure 7. Boxplot of computed sediment removal efficiency against predicted ones over testing phase.
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Figure 8. Boxplot of model’s uncertainty based on performances index for testing phase.

the ANFIS-PSO model (CC = 0.916) performed better
than the standalone ANFIS model (CC = 0.897). Based
on the presented results in Table 6, it is obvious that the
best input combination of ANFIS-GA and ANFIS-ACO
was performed in similar capacity. Whereas the other
hybrid ANFIS models offer different combinations due
to different paradigm of the optimization methods used
in those models for finding the best solution.

The scatter diagramof all developed predictivemodels
was shown in Figure 4 for the testing stages, respec-
tively. According to the presented diagram, the corre-
lation coefficient values of the developed modes were
ANFIS-ACO (CC = 0.862), ANFIS-DE (CC = 0.845),
and ANFIS-GA (CC = 0.877) models having the least
linear correlation value between the observed data and
the predicted ones. The Heat Map diagram was used to
compare the applied models to predict the removal effi-
ciency. The Heat Map diagram is expressed by superior
elements with amore regular process in the values of per-
formance indices (dark red color) and unbalanced ele-
ments with amore irregular trend (dark blue color). If the
values of the performance indices have a better process

and report lower error, the model will be more appropri-
ate (more reliable with less error), and if the responses
of the performance indices have more errors and weaker
performance, its color will be warmer. As presented in
Figure 5, if the indices of the models have higher and
stronger power in prediction, the graph will have a cooler
color. If the model has more irregularity and errors and
weaker performance, its color will be warmer. In these
two stages, the ANFIS-PSO model has the coolest color
which indicates the least weakness and irregularity in the
process, and the ANFIS-DEmodel has the warmest color
indicating the highest weakness and themost irregularity
in the process of performance index.

For better graphical representation, the Taylor Dia-
gram was generated. The results of the Taylor Dia-
gram showed a good agreement with the scatter charts.
Figure 6 shows the better relative convergence between
the ANFIS-PSO predictive model (green rectangle) and
the observed data. The ANFIS-PSO model has the high-
est convergence between predictive models with the
observed data (over 0.9) in both testing and training
stages. The ANFIS-DE predictive model (yellow circle)
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Figure 9. Boxplot of the variables uncertainty based on performances index for testing phase.

also has the least convergence between the predictive
models and the observed data.

Box diagram is a standard way of displaying data dis-
tribution. One application of this diagram is symmetry
display. As shown in Figure 7, the results obtained by
the ANFIS-PSO model were in good agreement with the
observed data. The determination was based on the char-
acteristics of a box diagram (minimum, maximum, the
first quartile, the second or middle quartile and the third
quartile).

5.1. The influence ofmodel uncertainty on the
performance indices

In this section, the impact of the model’s uncertainty on
the performance indices (RMSE, CC, W-Index, SRMSE)
was investigated. In accordance to the reported results
in Figure 8, the index of W-Index (IQR = 0.78) has
the highest sensitivity compared to other indices over
the test modeling stage. The RMSE and SRMSE indices
have the same values of IQR (0.76), also the CC
(IQR = 0.75) has less IQR in comparison with the other
indices.

5.2. The influence of input variables on the
performance indices

The impact of the input variables on the performance
indices was investigated for the ANFIS-PSO model due
to its superiority in sediment removal predictability. In
this way, the indices values were obtained by eliminat-
ing some of the input variables through the ANFIS-
PSO. The results showed that in the testing stage of
the indices of CC (IQR = 0.17) has the highest sen-
sitivity in the way of data entry and the combination
of independent variables in the model. However, other
indices have similar IQR values (0.16) in this stage.
Figure 9 shows the performance of each of the indices
influenced by the input change on the ANFIS-PSO
model.

5.3. Impact of the data number on performance
indices

In order to investigate the effect of the input data num-
ber on the sediment removal efficiency prediction for
the superior model (i.e. ANFIS-PSO), the data have been
randomly eliminated with the different percentages of
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Table 7. Comparison of obtained results
and regression equation.

Technique CC RMSE

Train Stage
ANFIS-PSO 0.915 5.276
(Singh, 2018) eq 0.74 8.89
Test Stage
ANFIS-PSO 0.916 6.176
(Singh, 2018) eq 0.71 11.45

10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% and 50%.
In the testing stage, CC index (IQR = 0.0.76), W-Index
(IQR = 0.66) have demonstrated the most sensitivity to
the number of input data. However, in this stage, the sen-
sitivity of SRMSE (IQR = 0.46) and RMSE (IQR = 0.34)
is less than others. The results of ANFIS-PSOmodel per-
formance after the random elimination of the data at
different percentages are shown in Figure 10.

5.4. Comparison of the obtained results to empirical
relations

The obtained results from the ANFIS-PSO model as
a superior predictive model were validated against

the well-established empirical relation obtained by
Singh (2018) (Table 7). Validation showed a noticeable
improvement through the achieved results using the
developed ANFIS-PSOmodel with respect to the regres-
sion relation.

The results indicated an improved correlation error
between the predicted data and the observed ones and
in between regression relationship and the ANFIS-PSO
model with the value of 23.648% in the training stage
and the decrease of 40.65% in RMSE error. In addi-
tion, for the ANFIS-PSO model testing stage, correla-
tion between the predicted data and the observed ones
has been increased 29.01 percent and root mean square
error has been decreased 46.01 percent in compare to
regression relation.

6. Conclusion

In this paper, four hybrid AI models (i.e. ANFIS-PSO,
ANFIS-GA, ANFIS-ACO and ANFIS-DE) were investi-
gated to predict removal efficiency in sediment discharg-
ers. The published data by Singh (2018) were used to
build the proposed hybrid AI models to estimate the

Figure 10. Boxplot of the data uncertainty based on indices for testing phase.
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removal efficiency. Ten non-dimensional input variables
were employed in 11 input combinations, and the best
input combination of the variables was selected in accor-
dance to the modeling performance. The results indi-
cated that the ANFIS-PSO model attained the least error
RMSE = 5.276 and W-Index = 0.954, and the highest
correlation coefficient (CC = 0.915), compared to other
models in the training stage. In addition, in the test-
ing stage, the ANFIS-PSO model showed the superior
prediction capacity with minimum (RMSE = 6.176 and
W-Index = 0.944) and maximum (CC = 0.916). The
indices of scattering distribution of the obtained results
(median:Q1,Q3) showed that theANFIS-PSOmodel has
better symmetry with the observed data. The errors for
the mentioned indices over the testing stage were 4.863%
‘median’, 7.36% ‘Q1’, and 2.037% ‘Q3’, respectively. The
study investigated the effect of eliminating one, two,
three, four and five variables. The results demonstrated
that the performance indices havemore sensitivity results
to the number of input variables and their combination.
In the final stage, the data were eliminated as 10%, 15%,
20%, 25%, 30%, 35%, 40%, 45%, 50%, and the scatter-
ing of the distribution of each index was investigated.
The results indicated the sensitivity of the correlation
coefficient index over the testing stage.
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