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Abstract A relatively short list of reference viral, bacterial
and protozoan pathogens appears adequate to assess microbial
risks and inform a system-based management of drinking wa-
ters. Nonetheless, there are data gaps, e.g. human enteric vi-
ruses resulting in endemic infection levels if poorly
performing disinfection and/or distribution systems are used,
and the risks from fungi. Where disinfection is the only treat-
ment and/or filtration is poor, cryptosporidiosis is the most
likely enteric disease to be identified during waterborne out-
breaks, but generally non-human-infectious genotypes are
present in the absence of human or calf fecal contamination.
Enteric bacteria may dominate risks during major fecal con-
tamination events that are ineffectively managed. Reliance on
culture-based methods exaggerates treatment efficacy and re-
duces our ability to identify pathogens/indicators; however,
next-generation sequencing and polymerase chain reaction
approaches are on the cusp of changing that. Overall, water-
based Legionella and non-tuberculous mycobacteria probably
dominate health burden at exposure points following the var-
ious societal uses of drinking water.
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Introduction

The provision of safe drinking water has been one of
humanity’s most successful public health interventions and is
a defining aspect of a developed country. Nonetheless, igno-
rance of the potential risks and inappropriate training of staff
and managers working on drinking water systems still results
in unnecessary waterborne disease outbreaks in affluent com-
munities [1•]. Furthermore, re-introduction of once-controlled
diseases, such as cholera, may rapidly spread during periods of
disasters when sanitation systems are non-functional and
drinking water treatment is inadequate. A recent example
was the Haitian epidemic [2] where, although a developing
region, international aidworkers introduced the outbreak strain
and then tourists spread infections to more developed regions
[3, 4•]. Hence, to some degree, differentiating pathogen risks
between developed regions and those less developed, partic-
ularly rapidly developing regions, is artificial and not very
useful. Therefore, this review is relevant to most regions with
functional drinking water treatment provided through a com-
munity system. A key realization is the need for ongoing
system-wide vigilance, coupled with a preventative rather than
just responsive management approach. This approach is best
practiced globally using principles from the food industry’s
Hazard Analysis Critical Control Point (HACCP) approach,
described by the World Health Organization (WHO) as Water
Safety Plans (WSPs) [5, 6]. In addition to existing regulatory
framework constraints, thisWSP approachmay be particularly
hard to implement in (developed) regions that have not identi-
fied major waterborne outbreaks for decades.

Even with well-operated drinking-water treatment systems,
there is growing concern that aging drinkingwater distribution
systems (DWDSs) are vulnerable to higher rates of mains
breaks/repairs and related pressure losses that may lead to
pathogen intrusion scenarios [7•, 8•]. Also, traditional end-
of-pipe compliance monitoring practices may not identify
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short periods of DWDS intrusions or short periods of poorer
treatment performance, such as is associated with rain-
induced dirty-water events that appear to be associated with
increased rates of waterborne gastrointestinal disease [9].
Generally, drinking-water gastrointestinal cases are not well
quantified, even in developed regions, due to the insensitiv-
ities of surveillance and specific epidemiology studies [10,
11]. For the US (with approximately 300 million people) es-
timates of annual drinking-water gastrointestinal cases range
from 12–19 million [12]. In addition, beyond the DWDS is a
vast network of building or in-premise plumbing that, under
certain conditions, allows the growth and release of water-
based opportunistic pathogens, many resulting in respiratory
or skin diseases, such as from Legionella pneumophila and
non-tuberculous mycobacteria (NTM) [13]. At least in the US,
these water-based pathogens appear to cause a higher health
burden via hospitalization than waterborne enteric pathogens
[14•]. With the exception of recently enacted regulatory mon-
itoring for Legionella in The Netherlands, France, and Ger-
many, these water-based pathogens are neither targeted nor
identified by current regulatory monitoring that focuses on
fecal indicator bacteria (FIB) [e.g. Escherichia coli and en-
terococci]. Due to environmental growth of water-based op-
portunistic pathogens, quite different but familiar control strat-
egies (elimination of stagnation zones and related temperature
and disinfectant control) are required for in-premise plumbing,
particularly in healthcare settings [15].

This review builds on previously conducted reviews [5,
16•, 17–19], and is organized around recent findings associat-
ed with drinking-water microbial hazards and scenarios that
need to be managed as part of a WSP-like system-wide man-
agement framework to provide safe drinking water. This in-
formation should also be informative for the growing use of
quantitative microbial risk assessment (QMRA) to inform
WSPs [20]. As such, pathogens are grouped into waterborne
(enteric viruses, bacteria, parasitic protozoa, and fungi) and
water-based (environmental viruses, bacteria, free-living pro-
tozoa, and fungi) groups. Furthermore, crosscutting pathogen
issues, such as antimicrobial resistance (AMR) gene transfer
and the role of the host microbiome, are introduced.

Waterborne (Enteric) Pathogens

There are over 500 waterborne pathogens of potential concern
in drinking waters, identified by the US Environmental Protec-
tion Agency (EPA) through its Candidate Contaminant List
(‘CCL 3 Universe’ list, available at http://www.epa.gov/
safewater/ccl/pdfs/report_ccl3_microbes_universe.pdf). To aid
in identifying representatives within each of the microbial
groups (viruses, bacteria, parasitic protozoa, and fungi),
Table 1 lists current and likely members of importance to
manage waterborne risks from community drinking waters.

This subset contains representative members, known as
reference pathogens, which are increasingly being used to
support WSPs via QMRA, given their general coverage of
the vast majority of human health effects associated with
pathogens in drinking water [26].

Various counties have developed treatment goals or
drinking-water parameters based on microbial risk assessment
[5]; however, only in the Netherlands is there a regulatory
requirement for drinking-water companies to provide water
that, in theory, meets an annual gastrointestinal risk of <10−4

95% of the time. This means, for example, that drinking water
is required to have less than one enteric virus per million liters
of drinking water [27], a concentration well below the capabil-
ities of current measurement techniques. Epidemiology studies
have shown an increased gastrointestinal risk (30 %) when
enteric virus concentrations were at approximately one geno-
mic copy per liter [28], highlighting the difference between
what can be measured directly compared with the low concen-
trations sought by regulations to control risk of gastrointestinal
illness as estimated by QMRA. Hence, estimations of enteric
pathogen risks are more reliant upon measuring pathogen con-
centrations in contaminated source water(s), and using surro-
gates to estimate treatment removals [29]. As such, QMRA
estimates contain uncertainties associated with reference path-
ogen detection, their relationships to surrogates used, and rel-
evance of limited dose–response models that may not address
life-stage ofmost interest. Therefore, QMRA is probably better
used to present relative risks to inform management about
different risk scenarios in their considerations for developing
WSPs, rather than trying to estimate absolute risk levels.

Key areas not currently addressed in most QMRAs of sys-
tems are the DWDS and premise plumbing risks. For both,
biofilms on pipe walls and sediments within storage reservoirs
and pipes [30] present a sequestering environment for various
enteric pathogens, including viruses that are relatively resis-
tant to normal disinfection treatments [31], and allow growth
of water-based pathogens [32]. Limited QMRA studies of
biofilm enteric pathogen risks are available but results suggest
that accumulation of virions, known to occur within DWDSs
[28], could present a higher level of risk than background
levels when they slough off and re-enter the mass flow to
customers [33]. In addition, various free-living protozoa and
metazoan feeding within DWDS biofilms may also act as
disinfectant-resistance transport hosts for enteric pathogens,
including viruses [34•, 35]. The risks associated with water-
based pathogens, of particular relevance to premise plumbing,
are discussed latter.

Reference Enteric Viruses

Human noroviruses cause the most gastrointestinal illness in
all regions of the world, with the vast majority thought to be
acquired via person-to-person and then by food [36•], given
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the predominance of genogroup II strains implicated. In wa-
terborne cases, genogroup I is normally implicated [37], pre-
sumably due to increased environmental robustness. An inter-
esting finding with human noroviruses and the second most
common cause of gastrointestinal illness, rotavirus (although
greatly diminishing due to childhood vaccination programs),
is the need for certain histo-blood group antigen (HBGA)
receptors for these pathogens to bind to target cells [38]. Not
only do certain gut bacteria have these HBGA binding sites
but these bacteria may also facilitate infection, as recently
demonstrated with human B cells [39•]. Therefore, one’s gut

microbiome and blood group impact the likelihood of infec-
tion. Furthermore, there is now optimism that a routine cell
culture system for human noroviruses may be developed,
which would be of particular value to the water-treatment
industry. Non-human, culturable noroviruses, such as murine
noroviruses among others, are used as surrogates for treatment
performance (inactivation studies) but there is limited under-
standing of the validity of these surrogates for any human
norovirus genogroup or mode of inactivation [40, 41•].

Overall, Norovirus is considered one of the most conserva-
tive virus targets for drinking-water QMRA studies (measured

Table 1 Recognized and potential enteric and water-based microbial pathogens to manage community drinking water risks

Microbial
group

Enteric (waterborne) Water-based (opportunistic)

Recognized Potential Recognized Potential

Viral Adenovirus 40 and 41
Avipolyomavirusa

Enterovirus A–D
Hepatitis A and E
Norovirus G1 and G2
Rotavirus A
Sapovirus G1

Mamastrovirus 1
Orthoreovirus C

None Mimivirusb

Mamavirusb

Bacterial Aeromonas hydrophilac

Campylobacter coli
C. jejuni
Salmonella enterica
(non-typhoid)

Shigella sonnei
Vibrio choleraee

Acinetobacter baumanniic

Arcobacter butzleri
Helicobacter pylori
Clostridium difficilec

Listeria monocytogenes
Pseudomonas aeruginosac

Staphylococcus aureusc

Yersinia enterocolitica

Legionella longbeacheaed

Legionella micdadeid

Legionella pneumophilad

Escherichia coli O157:H7f

NTMc,d,g

Pseudomonas aeruginosac

Acinetobacter baumanniic

Aeromonas hydrophilac

ARB (Afipia, Bosea,
Parachlamydia spp.,
Coxiella burnetii)d

E. coli (toxigenic strains)
Listeria monocytogenesd

Staphylococcus aureusc

Stenotrophomonas maltophiliac,d

Protozoan Cryptosporidium hominis
and parvum

Cyclospora cayetanensis
Giardia intestinalis
assemblages A and B

Toxoplasma gondii

Blastocystis hominis Acanthamoeba T4
Balamuthia mandrillaris
Naegleria fowleri

Acanthamoeba spp.d

Vahlkampfia spp.d

Vannella spp.d

Vermamoeba vermiformisd

Fungal None
Microsporidia (e.g. Encephalitozoon
bieneusi, E. intestinalis)

Candida albicans None Aspergillus fumigatus
Aspergillus terreus
Candida albicans
Candida parapsilosis
Exophiala dermatitidis

AMR antimicrobial-resisting, ARB amoeba-resisting bacteria, QMRA quantitative microbial risk assessment, VBNC viable but non-culturable, DWDS
drinking water distribution systems, NTM non-tuberculous mycobacteria
aMain species being JC polyomavirus, which is largely excreted in urine, as it infects the kidneys along with the respiratory system or brain
bAcanthamoeba polyphaga mimivirus (APMV) may cause respiratory disease and unknown health effects from Mamavirus [21]
cMost strains of species from the environment may be non-pathogenic, however there is future potential for AMR strains. For P. aeruginosa, most
clinical disease is identified with otitis media, with less severe disease via drinking water aerosols leading to diffuse bronchopneumonia and more severe
disease in high-risk children with cystic fibrosis; folliculitis is important directly via drinking waters used in pools/spas
d Largely non-pathogenic amoeba hosts containing ARB, of which many ARB are of key concern, from drinking water [22], except possibly Coxiella
burnetii, which is of low theoretical risk estimated by QMRA [23•]
e Cholera may re-emerge if a major event interferes with drinking-water disinfection, and an epidemic strain is introduced from an endemic region of the
world
f Shiga toxin and verotoxin-producing E. coli (and various intracellular Salmonella and Listeria) strains may grow within free-living protozoa [24], and
non-pathogenic VBNC E. coli in DWDS biofilms [25]
g Various NTM, includingMycobacterium avium (M. intracellulare) complex, M. chelonae, M. fortuitum, M. gordonae, and M. kansasii
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via reverse transcriptase-quantitative polymerase chain reac-
tion [RT-qPCR])—conservative in that if Norovirus risks are
managed, most other enteric viruses will also be controlled.
However, there are limited dose–response models to interpret
molecular (RT-qPCR) exposure data [42•], noting it is un-
known what fraction of virions may be infectious (given that
fresh suspensions of virions were used in dose–response stud-
ies versus more aged virions typically present in the environ-
ment, and that both infectious and non-infectious virions are
measured by RT-qPCR). Counteracting the infectious fraction
to some unknown degree is virion clumping, which would
increase infection likelihood [43]. In the absence of infectivity
data, the WHO, as well as various other jurisdictions, recom-
mend culturable rotaviruses as a preferred enteric virus refer-
ence, or the environmentally hardier human adenoviruses or
reoviruses, which may be in similarly high concentrations as
noroviruses in sewage-contaminated waters [44–46]. The
problemwith using adenoviruses is that gastrointestinal illness
is largely caused by serogroups 40 and 41, whereas the dose–
response model available for QMRA is only for a respiratory
strain, and there are limited illness or infection rates known for
reoviruses (Orthoreovirus C) in humans.

Regarding virus surrogates (typically bacteriophages), there
is no identified single surrogate known to mimic the various
behaviors of different human enteric viruses (with respect to
surface charge, hydrophobic interactions, and inactivation by
sunlight, disinfectants, etc.). Human adenoviruses provide a
good example of a key virus risk and considerations for what
surrogate is most suited, being more resistant than Enterovirus
or Rotavirus when ultraviolet (UV) disinfection is practiced.
Given the expectation for a 4-log10 inactivation of surface
waters in the US (i.e. 99.99 %), it is of concern that human
adenoviruses are relatively poorly inactivated by so-called low
pressure (LP) UV disinfection (monochromatic at 254 nm),
but readily inactivated with medium pressure (MP), polychro-
matic UV treatment (including 254, 265, 280 and 295 nm
wavelengths) [47•]. The differences are, in part, thought to
arise due to LP-UV targeting nucleic acids, which may be
repaired by the host cell, whereas MP-UV also impairs the
protein coats of virions, potentially impeding cell infection.

Therefore, consideration of these different modes of inacti-
vation is important when selecting an appropriate surrogate. For
example, a commonly used disinfection bacteriophage surro-
gate, the F-RNA coliphage MS2, demonstrates a 4-log inacti-
vation with 64 mJ/cm2 LP-UV and 46 mJ/cm2 MP-UV com-
pared with adenovirus 2 requiring 120 and 45 mJ/cm2, respec-
tively [47•]. Not only do these LP- and MP-UV systems inac-
tivate bacteriophages by different mechanisms but their host
bacterial cells may also use different repair mechanisms (re-
ferred to as photoreactivation and dark repair mechanisms). In
the case ofMS2, there appears to be no repair by theE. coli host,
whereas the dsDNA Salmonella bacteriophage PRD1, appears
to be the most resistant of four bacteriophages examined, with a

4-log10 reduction (similar for both LP- and MP-UV) requiring
103 mJ/cm2 with photoreactivation versus only 35 mJ/cm2

without reactivation [47•]. In general, MS2 is a valid surrogate
for chemical disinfection processes but due to its E. coli source
from various warm-blooded animals, it is not a good index of
human enteric virus presence in environmental waters [48].

In summary, human enteric reference viruses include spe-
cies of the genera Adenovirus, Enterovirus, Norovirus, and
Rotavirus, and potentially Orthoreovirus C (a reovirus). Gene-
rally, only one or two are chosen but only when there is likely
to be a human source of fecal contamination yielding human
enteric virus risk. In the absence of a sanitary survey to indicate
possible sewage/septic seepage pollution to source waters, or to
give a second opinion, human-targeted Bacteroides provide a
valuable and potentially more sensitive indicator than assaying
for human enteric viruses [49]. In urbanized settings, DWDS
intrusions are likely to include human enteric viruses, which
may dominate gastrointestinal risks via drinking water [43].

Reference Enteric Bacteria

The classic waterborne enteric pathogens include Vibrio
cholerae (serogroups O1 and O139, causing cholera), Salmo-
nella enterica (subsp. enterica ser. Typhi, causing typhoid),
and Shigella spp. (four species causing dysentery), which
have largely been controlled by water treatment/disinfection
and are therefore rarely an issue via drinking water in devel-
oped regions. However, person-to-person and foodborne
spread maintains Shigella sonnei within the sewage of devel-
oped regions, along with closely-related shiga toxin and
verotoxin-producing E. coli, and pathogenic species of Cam-
pylobacter, Salmonella, Arcobacter, Helicobacter and
Yersinia (Table 1). An emerging issue is that of AMR, which
may occur within any of the bacterial members listed in
Table 1 but is noted here by example for E. coli in well waters
associated with animal production [50]. These AMR genes
may horizontally transfer between commensal and enteric
pathogenic bacteria, and present a higher risk due to antimi-
crobial treatment failures [51•]. Within healthcare facilities,
there is also a considerable health burden due to the preva-
lence of AMR Pseudomonas aeruginosa and Clostridium
difficile; with the latter being a spore-former it may persist in
sewage and river waters and eventually make its way to drink-
ing waters, and AMR-P. aeruginosa may grow post-water
treatment (discussed further in the section on “Control of
Water-Based Pathogens”) [Table 1, potential future concern].
AMR Staphylococcus aureus is also of potential concern via
companion animals to water [52] and could be considered a
useful reference pathogen for AMR in the future.

The most recognized and useful reference enteric bacteria
in developed regions are Salmonella enterica, Campylobacter
jejuni, and E. coli O157:H7, each containing human patho-
genic strains that vary by fecal source [53, 54]. However, there
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is limited data on the quantification of these pathogens in
source drinking waters (most studies provide presence/
absence data) due to the difficulties in culturing these bacteria
from the environment [31, 55]. Therefore, given the general
presence of FIB and their ease of culture, either E. coli or
enterococci have been used as surrogates to assess enteric
bacterial pathogen removals by treatment barriers. However,
there are improvements in risk management if culture-free
methods are used, as discussed in the next section.

Non-Culturable States of Enteric Bacteria

Historically, clinical and environmental microbiology methods
have been based on culturing cells on selective media. Today
this is still the general situation in clinical laboratories, although
next-generation sequencing costs are so rapidly decreasing that
single gene to whole metagenomic approaches are enabling
rapid and broader detection of pathogens from clinical and
environmental samples (Fig. 1). From a water perspective,
qPCR assay for Enterococcus spp. (targeting 16S rDNA) was
the first molecular method approved by the EPA (for

recreational water assessment in treated/sewage-impacted wa-
ter bodies [57•]). This assay of total (dead or alive) enterococci
provides the best index to health risk following fresh (and ma-
rine) water exposures in epidemiology studies [58•] (gastroin-
testinal risk was assumed to be dominated by enteric viruses
due to the presence of municipal wastewater contamination).
Hence, it would seem appropriate to consider the use of qPCR
for enterococci as possibly the most useful microbial index
identified to date for sewage-contaminated drinking water. Fur-
thermore, improved detection sensitivity and apparent viability
appears possible by qPCR targeting the thousands of copies of
16S ribosomal RNA within viable bacterial cells rather than
qPCR directed to low-copy-number DNA-based genes [59•].

As for all possible pathogen infections, we now realize that
our health is also reliant upon the ‘health’ of our microbiomes
and, in the case of the gastrointestinal tract, the gutome is being
explored by next-generation sequencing approaches. Informed
by these metagenomic studies and clinical samples from out-
break cases, the expectation is that many more important, cur-
rently uncultured drinking water pathogens (and pathogen-
vulnerable gutomes) will be identified over the coming decades

Fig. 1 Various cell targets used
for non-culture-based methods
and culture-based phenotypic
methods to detect
microorganisms from water
(from Sen and Ashbolt [56]).
PFGE pulse field gel
electrophoresis, RAPD random
amplified polymorphic DNA,
AFLP amplified fragment length
polymorphism, MALDI-TOF
matrix-assisted laser desorption/
ionization-time of flight, NASBA
nucleic acid sequence-based
amplification,FISH fluorescent in
situ, hybridization, rRNA
ribosomal ribonucleic acid.
*Represents RNA from 18S
rRNA present in eukaryotes such
as protozoa, or 16S rRNA present
in bacteria
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than those listed in Table 1, noting that etiologic agents are
identified in less than 45 % of drinking-water outbreaks in the
US [16•], in part due to the inability to culture them.

However, even well-known bacterial pathogens lose the
ability to be cultured when moved from recent cell growth
in the gut to the aquatic environment. Campylobacters are
particularly well known for this, forming viable but non-
culturable (VBNC) cells [60•]. Whereas the term active but
non-culturable (ABNC) makes more sense given the term
‘viable’ normally refers to the ability to grow an organism,
VBNC is used in this review due to the majority of papers on
this topic describing these cells as such. The VBNC cell state
is important to drinking water and public health due to the
potential of VBNC cells to cause infection in humans [61],
formed during water disinfection [62], and this has not yet
been addressed by current culture-based compliance monitor-
ing of drinking water, nor has the likely environmental biofilm
niche for VBNC environmental pathogens been sampled. A
further complication (in describing these pathogens as enteric
and/or environmental) is that resuscitation of VBNC cells may
also occur within environmental (free-living) protozoa—true
for a variety of the intracellular enteric pathogens listed in
Table 1 [63]. Hence, it is probably more useful to take a mi-
crobial ecology perspective and think of the VBNC state as
part of the normal lifecycle of most bacteria that do not form
spores. As such, various mechanisms have probably evolved
over millennia, with their various interactions within aquatic
(and subsequently water system) predatory eukaryotic organ-
isms, well before they adapted to the human gut (also true for
the FIB, e.g. Enterococcus faecalis [64]).

Of particular relevance to drinking water disinfection, and
easily confused with the VBNC state, are highly-resistant cell
forms that enable bacterial survival in the presence of
stressors, known as persister cells [65]. Unlike VBNC cells,
there is always some fraction of persisters in a population
present as a reversible non-replicating state, a particular fea-
ture of AMR strains. Persisters may represent a few percent of
a bacterial population and are more common post-exponential
growth [65]. Although not specifically identified, persisters
may contribute to the inability to completely disinfect drink-
ing water, seen by various tailing effects in disinfection kinetic
studies [66] and the downstream presence of various enteric
bacteria identified by molecular methods within drinking wa-
ter/biofilms, e.g. along with VBNC forms of E. coli and
Helicobacter pylori [25, 67].

H. pylori is a particularly controversial ‘waterborne’
pathogen due to the presence of non-culturable cells in
drinking water. To date, H. pylori has only been detected
by molecular methods in drinking waters [67], and it dem-
onstrates a subpopulation able to ‘survive’ drinking-water
chlorination treatment [68], yet there is only weak epide-
miologic evidence for waterborne transmission [69]. As
with many enteric pathogens, person-to-person spread is

probably more important than the waterborne route, yet it
remains unclear if H. pylori should even be considered
waterborne in developed regions.

Reference Parasitic Protozoa and Fungi

When a parasitic protozoan agent is identified during water-
borne outbreaks in the US it was most often due to the pres-
ence of cysts to human-infective Giardia intestinalis (syno-
nyms G. lamblia and G. duodenalis) [16•], further described
as assemblages A or B. However, from a European perspec-
tive, and globally in developed regions over the last decade,
more disease burden has resulted from chlorine-resistant oo-
cysts of Cryptosporidium hominis or C. parvum [70]. Consid-
erable research and management changes have been success-
ful in reducing waterborne cryptosporidiosis from large mu-
nicipal systems, and molecular methods are now available to
identify the small subset of genotypes that are likely to be
human infectious [71]. Nonetheless, QMRA estimates of wa-
terborne cryptosporidiosis from small systems in developed
regions is considerably higher than giardiasis, and possibly
well above levels considered acceptable [72]. Therefore,
C. parvum and/or C. hominis are generally the reference par-
asitic protozoan used in QMRA to assess and manage drink-
ing waters. Unfortunately, most jurisdictions do not discrimi-
nate between the genotypes that may infect humans versus
those that may not (as a precautionary principle), yet that
decision may have major cost ramifications, and money could
be better spent elsewhere to reduce drinking-water disease
burden when the two key Cryptosporidium oocyst sources
(human sewage or calf feces [73]) are not likely to impact
source drinking waters.

Waterborne outbreaks from other parasitic protozoa appear
to be rarer (e.g. Blastocystis hominis,Cyclospora cayetanensis,
and Toxoplasma gondii) [74], and attention toCryptosporidium
control in watersheds, water treatment, and distribution should
largely address these other members. Less well-understood are
the microsporidia, once classified as parasitic protozoan and
identified in some waterborne outbreaks [70]. Enterocytozoon
bieneusi has been identified in source waters [73] and is con-
sidered the most common member among 17 human patho-
genic microsporidian species that largely impact HIV/AIDS
and immunosuppressed patients [75]. Taxonomically, the
microsporidia are within the phylumMicrospora, and are clas-
sified among spore-forming unicellular fungal parasites. As
such, they produce smaller spores than the oo/cysts of parasitic
protozoa, but due to likely low occurrence their movement
through sand filtration processes [76] may be better modeled
using bacterial spore surrogates, which are typically removed
to a lesser degree than parasitic protozoan oo/cysts [77]. Zoo-
notic spread from bovines is considered important, although
microsporidial infection rates in cattle are probably significant-
ly lower than for Cryptosporidium spp. [78].
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Water-Based (Environmental) Pathogens

Amoeba-Resisting Bacteria

Respiratory disease caused by NTM and L. pneumophila is
the dominant hospitalization cost claim in the US, and largely
results from drinking-water-related aerosol exposures [14•].
However, there has been slow recognition of this fact, due,
in part, to the overlap in clinical findings of the severe form of
pneumonia known as Legionnaires’ disease with other more
common causes of community-acquired pneumonia (CAP),
noting that NTM also contribute to the health burden through
wound and soft tissue infections, and P. aeruginosa via AMR
infections in healthcare settings and, to a lesser degree, from
folliculitis via pools and spas [79]. Looking at the legionellae
first, despite Legionella micdadei being identified from blood
in a CAP patient in 1943 it took the 1976 Legionnaires’ dis-
ease epidemic in Philadelphia to fully recognize and describe
L. pneumophila and Legionnaires’ disease [80]. Indeed, retro-
spectively, the first documented epidemic of Legionnaires’
disease was traced back to Austin, MN, USA, in the summer
of 1957 [81]. However, legionellosis was only made a report-
able disease in the US in 2001, with L. pneumophila causing
80–90 % of identified cases in the US [16•] and worldwide
[82], and with L. longbeacheae adding 2–7 % of Legion-
naires’ disease cases, except in Australia where it accounted
for approximately 30 % [82]. A further complication results
from the difficulty in culturing L. pneumophila, which re-
quires the reduced forms of the amino acid cysteine and fer-
rous iron [83], and the likelihood of VBNC and other difficult-
to-culture cell forms [84] being dominant in drinking waters.
One solution identified in the 1980s is to co-culture these
problematic cell forms with free-living amoebae [85], as oc-
curs in nature [86]. Follow-up identification can then use mo-
lecular methods targeting the 16S rRNA gene and PCR direct-
ed to the macrophage infectivity potentiator (mip) gene to
confirm L. pneumophila, with other genes (gyrA, rpoB, rnpB)
also used to describe additional species [87].

The NTM are ubiquitous in freshwaters and are often the
dominant group within drinking-water pipe biofilms, prob-
ably selected for by the presence of a residual disinfectant
[88•]. Opportunistic members linked to drinking water in-
fections include theMycobacterium avium complex (which
includes M. intracellulare), M. chelonae, M. fortuitum, M.
gordonae, andM. kansasii [89]. However, care is needed to
resolve between clinically important strains and non-
pathogenic environmental members. Environmental iso-
lates of clinically relevant species are often not identified
as the etiologic agents. However, is this just a limit of our
culture-based approaches or truly a misdiagnosis of the en-
vironmental source? Next-generation sequencing not reli-
ant on culturing is likely to resolve such controversies with
these water-based pathogens.

Most important to note is that L. pneumophila, NTM,
and an increasing list of other amoeba-resisting bacteria
(ARB) are opportunistic pathogens growing within
drinking-water biofilms (Table 1). Chronic persistence of
ARB is particularly problematic to control in healthcare
settings due to the ubiquitous nature of amoebae and the
protection they confer on their intracellular pathogens [90].
Comparative genomics is also proving to be beneficial to
identify human pathogenic members, such as key
Legionella species [82].

Free-Living Amoebae and Their Viruses

Both culture- and molecular-based methods have identified
the free-living amoebae Acanthamoeba, Naegleria,
Protacanthamoeba spp. and Vermamoeba (formally
Hartmannella) vermiformis. Less frequent detections include
Echinamoeba, Vahlkampfia, and Vannella spp., amongst
others, all likely environmental hosts of amoeba-resisting bac-
terial pathogens such as NTM and legionellae in drinking
waters [22, 91•] (Table 1). Some of these free-living amoebae
may be pathogens in their own right, such as those causing
Acanthamoeba keratitis via drinking water, a serious eye in-
fection primarily affecting contact lens users, although several
cases have involved other genera (Vahlkampfia, Vannella, and
Hartmannella spp.) [22]. More severe and often life-
threatening infections affecting immunocompetent children
and immunocompromised adults include encephalitis involv-
ing Acanthamoeba spp. and Balamuthia mandrillaris, and
Naegleria fowleri causing meningoencephalitis [22]. Nasal
irrigation with drinking water from warm climatic zones has
been identified as an important source of primary amoebic
meningoencephalitis (PAM) caused by growth of N. fowleri
through nasal passages to the brain [92]. Luckily, N. fowleri is
readily controlled in drinking water by maintaining a disinfec-
tant residual [93], remembering the main growth is thought to
occur within biofilms, therefore biofilm control through min-
imization of stagnation zones and monitoring is also sug-
gested for problematic climatic zones.

Acanthamoeba polyphaga mimivirus (APMV), first
misidentified as a bacterium due to its large size (>700 nm
capsid), appears to be one of a group of giant viruses that
infect aquatic and soil protozoa and metazoan [94]. They are
environmentally very robust and some have been implicated
in human cases of pneumonia [21]. Recent viral metagenomic
studies have vastly increased the number of new members of
the Megavirales order of giant viruses and their virophages
[95], with new species of clinical significance expected.

Control of Water-Based Pathogens

A common feature of the water-based pathogens is the ability
to grow to problematic concentrations within biofilms on pipe
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walls and sediments, particularly during periods of water stag-
nation and warmer conditions; therefore, control below some
critical concentration is necessary to manage these environ-
mental pathogens. For L. pneumophila, some millions of cells
per liter of drinking water may be necessary so that aerosols of
a respiratory size reach the alveoli and cause human infection
[96]. Lesser concentrations, but some contact, are required for
P. aeruginosa folliculitis [79]; the infective doses for NTM
and N. fowleri are probably low but are undocumented.

Therefore, there are competing issues in managing all
of these water-based pathogens, should they co-occur.
Legionella and NTM of human health concern probably
both grow within amoebae; therefore, limiting suscepti-
ble amoebae hosts by way of biofilm control seems
logical, as would monitoring for total amoebae to eval-
uate control [97]. However, maintaining a high disinfec-
tant residual may select for NTM biofilms that could
contain problematic strains, although control N. fowleri.
Some evidence suggests that monochloramine is effec-
tive against free and amoeba-cultured L. pneumophila,
while chlorine and chlorine dioxide are less effective
drinking-water disinfectants against amoeba-cultured
pathogens, implying different modes of disinfection
[98]. Of pipe materials, copper appears to develop less
biofilm biomass, but select for VBNC L. pneumophila
compared with PVC [99•, 100•], whereas cross-linked
polyethylene appears to support both legionellae and
M. avium complex as culturable cells at 40–55 °C
[101]. Hence, keeping piped cold water cool (<20 °C)
and hot water >60 °C via constant circulation seems to
offer the most pragmatic control options for all of these
pathogens within premise plumbing [15]. A speculative
control approach is to maintain an actively antagonistic
biofilm community that suppresses growth of members
that may be opportunistic pathogens [102].

Opportunistic Fungal Infections

Of the filamentous fungi, Aspergillus fumigatus and
A. terreus have been isolated from hospital drinking
waters that caused nosocomial infections [103]. Howev-
er, while fungal filaments are often observed in
drinking-water biofilms, they are rarely identified. Re-
cent next-generation sequencing of drinking-water
biofilms has identified three opportunistic fungal patho-
gens—Candida albicans, C. parapsilosis, and Exophiala
(formally Wangiella) dermatitidis [104]. It is noted that
disseminated candidiasis caused by C. albicans is a
leading nosocomial bloodstream infection in the US,
with a high case fatality rate. E. dermatitidis is a ubiq-
uitous black yeast that grows optimally around 40 °C
and is most commonly seen in saunas, steam baths, and
humidifiers [105].

Conclusions

With of advent of next-generation sequencing for routine clin-
ical and environmental microbiology, there is renewed hope to
improve upon identifying novel and currently known, but non-
detected, physiological states of drinking water pathogens.

There is also intriguing new evidence that what were once
thought of as strictly enteric pathogens may contain members
with environmental amplification potential, ranging from hu-
man enteric viruses [34•] to E. coliO157:H7 [23•], but for now
that is largely speculative. What is more concrete is the rising
health burden resulting from opportunistic pathogens via drink-
ing water [13], which are largely unregulated worldwide.
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