

Graphene Technologies for a Cleaner World

 G_2O

February 2015 Contact Tim Harper +44 7894 708989 timharper23@mac.com

G₂O - Applying Graphene Filters

- Proven graphene filter
 technology addressing a \$10Bn
 market and reducing energy
 costs by up to 97%.
- Applications include
 - Desalination of seawater
 - Environmental maritime applications in aquaculture and oil & gas production
 - Drain water and waste water management

The Water Problem

- The world will face a 40% global shortfall between forecast demand and available supply by 2030
- Within the next 15-20 years, the worsening water security situation risks triggering a global food crisis, with shortfalls of up to 30% in cereal production.
- * 780 million people still have no access to clean drinking water
- * Desalination is energy intensive and relatively expensive
 - Existing solutions require high pressures and high membrane areas
 - Membrane fouling increases energy costs and decreases lifetime

The Environmental Problem

In spite of compliance with increasingly strict public regulations, too much harmful fluids and particles are discharged into the environment by:

- * Transportation: Road traffic in cities, coastal & ocean shipping, etc.
- * Energy sector: Coal, oil & gas exploration and production
- * Industries : Chemicals, semiconductors, foods, pulp & paper, etc.

The large environmental industry, in spite of its R&D efforts, is not yet ready with:

- New materials,
- * Less energy intensive processes,
- Much better membrane & filtration technologies
- * More efficient processes to reduce effluence

G₂O Contribution to a Cleaner World

High throughput graphene oxide filter

- Flux and permeate results 100x greater than existing comparative results
- Increases productivity, decreases operational costs
- Resists fouling (paramount in oil/water separation systems)
- * Can be quickly regenerated without chemicals
- * Simple to manufacture
- Brings produced water into regulatory compliance
- Allows for greater volumes of reuse water to be utilized
- * Can be tailored to a wide variety of applications

Fouling Is No Longer An Issue

Desalination with G₂O filtration

Energy (kW) required to desalinate 1 m3 of water with RO compared to membrane filtration

Water Desalination

Flux Comparisons

Membrane	Manufacturer	Pure Water Flux (l/m2/ hr/bar)
SR3D	Koch	0.35
Filmtec NF270	Dow	13.3
DL	GE Osmonics	3.06
G_2O	<i>G</i> ₂ <i>O</i>	500 (8000 for ultrafiltration)

Brackish water	Seawater
80%	97%

*Assumes 10 bar pressure required for brackish water, 70 bar for seawater using current RO membranes and 50% energy recovery

Technology, IP and Partners

- Licensed a patented (pending) graphene membrane technology already developed at a US University
- Successfully scaled from 3cm to 9cm sheets with no performance degradation
- Collaborations initiated with Aquateam, Oslo (3rd party validation), Norwegian Water and the Centre for Process Innovation, Redcar (development partner)

G₂O Summary

- Technology validated by publication in high impact peer reviewed academic journals
- Our team has strong relevant background in filtration, engineering, graphene, technology commercialisation and water treatment
- Our graphene membranes have high throughput and easy regeneration simplifying filter designs
- Relationships with end users allows rapid iteration and reduces development risk