The Relationship Between Hydro-Climatic Variables & E. coli Concentrations in Surface & Drinking Water of Kabul River Basin, Pakistan.

Shahid Iqbal and Nynke Hofstra

Environmental System Analysis

Diarrhea is Global Issue

2010 Flood

Nowshera 2010 flood

(http://www.gfdrr.org/sites/gfdrr/files/publication/Pakistan_DNA_0.pdf)

To assess the impacts of flooding and hydro-climatic variables on *E. coli* concentrations in a region that floods every year.

Historical Floods in Kabul River

Sources and Pathways of Contamination

Sources and Pathways of Contamination

Methodology

- ✓ Bi-weekly sampling
- ✓ 9 surface water sampling
- \checkmark 5 drinking water sampling
- ✓ Statistical analysis
 - Correlation analysis
 - General Linear Model

Microbial Analysis

✓ MPN methods was used for the enumeration of *E. coli*.

✓ Surface water samples.

✓ Drinking water samples.

Transported to Lab (NIFA) within 4 hours of collection. Kept in icebox.

Correlations of Surface & Drinking water samples

(a) Avg. Surface air temperature (°C)
(b) Avg. Water temperature (°C)
(c) Sum of 5 days precipitation (mm)
(d) Kabul river discharge (log m³/s)

E. Coli concentrations (log cfu/100ml) Surface water samples

E. Coli concentrations (log cfu/100ml) Drinking water samples

Model outcome

$\log(Y) = \beta_0 + \beta_1 Tw + \beta_2 p + \beta_3 \log (D) + \beta_4 Tw * \log (D) + \varepsilon$

✓ R^2 value for surface water sources is 0.899.

✓ R^2 value for drinking water sources is 0.674.

Key Findings

- Based on analysis of our biweekly samples. *E .coli* concentrations (log *cfu/ 100ml*), positively correlated with
 - \star Avg. Water temperature.
 - \star Sum of 5 days precipitation.
 - ★ Discharge of Kabul river (log m^3/s).

All the water sources are unfit for drinking.
 Even not suitable for swimming or bathing

Next Steps

- We are going to model the *E. coli* concentration by using process based hydrological model.
- Also link the pathogen concentration with diarrheal data in the region.
- We have many more data during floods: ~1800 measurement over the period of 30 months. We will do time series analysis.

nuffic

Thank you for your attention !

Questions ?

Contact: muhammad.shahidiqbal@wur.nl

