

Innovation in H₂O Technology

Marianna Grossman Sustainable Water Resources Roundtable December 14-15, 2016 Florida Gulf Coast University & Babcock Ranch

Domains of H₂O Innovation

Conservation (Use Less & Substitution)

Efficiency (Energy & Water Productivity)

- Low-water fixtures and appliances
- Process improvement to save water & energy
- Better product design
- Landscaping & agriculture smart irrigation

Internet of Things (IoT)

- Groundwater management: remote sensing, aquifer recharge, water rights management
- Advanced Metering Infrastructure (AMI)
 - Leak detection
 - Demand Management/Variable Pricing
- Sensors and controllers for quality & volume
- Predictive analytics; automation; visualization

Internet of Things (IoT) WeatherTrack[™] Argos Analytics/Arup/IES

100 Year Flood – Existing Conditions

100 Year Flood – with 20% Higher Peak Flow

Leak Detection Technology

Minerva Ventures

Integrated Water Management

Imported Water Conservation Aquifer & Efficiency **Potable &** Recharge **Non-potable** Ground **On-site Treatment** Water Use Water **Centralized Treatment** Waste Water Recycle Reuse

Treatment, Reuse & Resource Recovery

- Centralized
 - Advanced Water
 Purification Treatment
 Plants
 - Treated wastewater for potable & non-potable uses

- Decentralized
 - H₂O capture, treatment and reuse for buildings, sites, campuses or districts/sub-regional
 - Reuse technologies (bio., chemical & mechanical)

SFPUC: Water Sources & End Uses

*over 75% of a commercial building's water demand can be met with non-potable water

Buildings Produce Water

181 Fremont, San Francisco: Mixed Use Development

- Source: Graywater
- End Use: Toilets & Irrigation
- Status: Under Construction

SFPUC 525 Golden Gate Ave. SF - Living Machine

Bioremediation: Using Biological Systems to clean water

Intrinsyx uses collection of bacterial endophytes with specialized plant cultivars for remediating the most prolific environmental pollutants in surface/groundwater and soil.

- Heavy Metals/Metalloids (Chromium, Arsenic, Manganese, Nickel, Copper, Cadmium, and others)
- Nitrates and Phosphates
- Trichloroethylene (TCE) and other chlorinated solvents
- Oil & Gas (TPH, PAH)
- Radionuclides (Uranium)
- Pesticides
- Explosives (TNT, RDX, HMX)

Integrated Systems for Biologically Based Water Treatment

- Floating Treatment Wetlands
 - Floating Islands and Biofoams (Plant and Microbe Based)
- Large Volumes e.g., Waste Water Lagoons
- Sewage and Grey Water Effluent
- Surface and Storm Water Runoff
- Water Treatment and Recycling

Landfill Leachate Results

Floating Treatment Media

- Ongoing collaborations with the field's leading scientists
- Novel collection of plant strains for removing heavy metals/metalloids & nutrients
- Endophytic bacterial strains for degrading pollutants (including TCE, PAHs, TPH)

Remediation of Wastewater Streams: Industrial, municipal, and agricultural wastewater

<image>

Removing metals from mine drainage

CCDTM Reverse Osmosis – The New RO

"The ReFlex RO is extremely easy to operate, it's user friendly, I would recommend it to anyone who needs high recovery, minimum man hours and low cost."

- Steven Doggit, Lead Operator, Mid-American Steel & Wire

RECOVER

©2016 Minerva Ventures

Summary

Maximum recovery - Up to 98% = 50 - 80%reduction in water waste and disposal

20 – 35% reduction in energy consumption Operates near thermodynamic minimum

Increased reliability and lowest OPEX through reduced scaling and fouling

Unmatched flexibility for changing water conditions and requirements –

Standard components, competitive CAPEX

Patented

Fortune 500 companies around the world rely on the consistent performance and ease of operation of their Desalitech RO solutions. - Major Savings

- Stabilizing & Streamlining Production

Stanford | Codiga Resource Recovery Center

Resiliency through Resource Recovery From Wastewater

Sebastien Tilmans (stilmans@stanford.edu) Craig Criddle (criddle@stanford.edu) Stanford University Civil and Environmental Engineering Codiga Resource Recovery Center

WOODS INSTITUTE FOR THE ENVIRONMENT STANFORD UNIVERSITY

ReNUWI

Re-inventing the Nation's URBAN WATER

INFRASTRUCTURE

The value of the water

Resource	Product Recovered	Value-added Product Recovered	US \$ per m ³	US \$ Per MG
1 m ³ wastewater	1 m ³ clean water	1 m ³ for agriculture (CA 2015 drought conditions)	0.90	3,400
		1 m ³ potable (US average 2014)	1.50	5,700

One m³ of wastewater

One *m*³ of clean water

\$0.90

In California, 43 wastewater treatment plants discharge 1,350 MGD of treated effluent to the Pacific Ocean.

If used for drinking water, that water would be worth \$7.7 million/day.

The William and Cloy Codiga Resource Recovery Center, Stanford University

Established in 2014, the Codiga Resource Recovery Center is a multidisciplinary learning center, dedicated to the development of innovative technologies for recovery of valuable resources from our waste streams.

©2016 Minerva Ventures

Currently, we only recover energy from suspended organics. How about recovering <u>more</u> energy?

If energy is recovered from dissolved organics, the energy balance flips.

The additional heat and the small quantity of biosolids produced enables complete drying. The dried biosolids can be gasified to syngas for more energy, leaving ash alone for disposal.

If these technologies can be field proofed, the results could look like this:

©2016 Minerva Ventures

Integration: Distributed Smart Grid for H₂O

- Integrating sources of water into a humanmanaged water cycle
- Managing both water supply and demand
- Water sharing within districts/buildings
- Connect with distributed micro-grid energy sources (renewable + storage)

Hassalo on 8th – Lloyd Ecodistrict Super Block: Portland, OR

Project Background

- Four block "super block" development in the Lloyd District
- 637 new apartment units and
- 47,000 square feet of retail/commercial space
- Projected completion in Summer 2015

Wastewater System

- 45,000 gallon wastewater per day
- Treatment steps:
 - primary treatment,
 - trickling filters,
 - tidal flow constructed wetlands,
 - anoxic constructed wetlands,
 - denitrification unit,
 - filtration,
 - disinfection with ozone and ultraviolet light.
- Closed loop system recycles water for toilet flushing, irrigation, and cooling tower make-up.

Project Rendering – Trickling Filters

Image Credit: GBD Architects

Sidwell Friends Middle School: Washington, DC

Stormwater System/2006

- Captures runoff from a green roof
- Directs it through a series of artistic flow forms.
 The flow form sculpture aerates the water to support a healthy ecosystem for pond.
- A recirculation pump sends water back to the flow form for continual treatment and appeal.
- As rain water enters the system, the pond overflows to floodplain that infiltrates water into the natural environment.

Wastewater System

- 3,000 gallons-per-day.
- Captures all wastewater (~3,000 gallons per day and cleans it through an onsite system including:
 - series of terraced constructed wetlands,
 - a trickling filter,
 - a recirculating sand filter, and
 - ultra violet (UV) disinfection.
- Closed loop system recycles water for toilet flushing and use in cooling towers.

Wastewater Treatment Wetlands in Front of Middle School

Policy, Financial and Market Innovation

- Cap and Trade for water rights
 - Rewards water saving practices
 - Makes water wasters pay more

- Finance: PACE, Rebates for Reuse, etc.
- Price water at accurate cost for replacement

Marianna Grossman Managing Partner Minerva Ventures mgrossman @minervaventures.com +1-650-520-7003 www.minervaventures.com @MGrossmanSV

Resource	Product Recovered	Value-added Product Recovered	US \$ per m ³	US \$ per 1000 gallons
1 m ³ wastewater	1 m ³ clean water	1 m ³ for agriculture (CA 2015 drought conditions)	0.90	3.41
		1 m ³ potable (US average 2014)	1.50	5.67
0.3 kg organic	0.1 kg compost		0.01	0.04
	0.1 m ³ methane	0.35 kWh power	0.04	0.16
	0.07 kg methane	compressed biomethane with 2015 state/fed credits*	0.08	0.32
	0.07 kg methane	0.03 kg PHB bioplastic	0.12	0.46
	0.07 kg methane	0.06 kg PHB prebiotic fish food supplement	0.33	1.25

3% of feed

Test Beds at CR2C

©2016 Minerva Ventures