
Evaluation of land use/land cover datasets in hydrological modelling using the

SWAT model

Sayed Amir Alawi * and Sevinç Özkul
Department of Civil Engineering, Dokuz Eylul University, Doğuş Caddesi, Tinaztepe Campus, Buca, Izmir 35390, Türkiye
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ABSTRACT

Land use/land cover (LULC) is a key influencer for runoff generation and the estimation of evapotranspiration in the hydrology of

watersheds. Therefore, it is essential to use accurate and reliable LULC data in hydrological modelling. Ground-based data

deficiencies are a big challenge in most parts of developing countries and remote areas around the globe. The main objective

of this research was to evaluate the accuracy of LULC data from two different sources in hydrological modelling using the soil

and water assessment tool (SWAT). The first LULC data was prepared by the classification of Landsat 8 satellite imagery, and the

second LULC data was extracted from the ESRI 2020 global LULC dataset. The study was conducted on the Kokcha Watershed, a

mountainous basin partly covered by permanent snow and glaciers. The accuracy assessment was done based on a compari-

son between observed river discharge and simulated river flow, utilizing each LULC dataset separately. After calibration and

validation of the models, the acquired result was approximately similar and slightly (5.5%) different. However, due to the

higher resolution and easily accessible ESRI 2020 dataset, it is recommended to use ESRI 2020 in hydrological modelling

using the SWAT model.
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HIGHLIGHTS

• Two land use/land cover (LULC) datasets were evaluated to analyse their accuracy.

• The ESRI LULC dataset represents a more accurate result than LULC data, which was prepared by the classification of Landsat

8 satellite images.

• The utilized remote sensing data in this study can be used in hydrological modelling for similar studies in the region.
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GRAPHICAL ABSTRACT

INTRODUCTION

Nowadays, in the changing climate and warming conditions, proper management of water resources, and the
design of water infrastructures extremely depend on hydrological modelling. Data deficiencies are a concern
for hydrologists and water managers all around the world, particularly in developing countries and remote
areas. Hydrological modelling using remotely sensed data is progressing in recent years, especially in data-

scarce regions (Li et al. 2012). Utilizing remote sensing data helps to ‘simulate the impacts of human actions
on water resources and assist in the planning and management of river basins’ (Almeida et al. 2018). Thus, inves-
tigating the influence of environmental change on watersheds is as important as the proper utilization of remotely

sensed information for hydrological modelling. LULC has a vital role in generating surface flow due to its direct
impact on infiltration and evapotranspiration in addition to many factors such as slope, soil types, and weather
conditions. According to research carried out in the upper Mara River, Kenya, 97.5% of changes in river flow

were caused by LULC change (Mwangi et al. 2016). Therefore, while utilizing remotely sensed data, we need
to choose it from a reliable source.

Hydrologists and water managers need to use the most updated LULC data in hydrologic calculation and

runoff modelling. Remotely sensed data are valuable sources to produce an up-to-date LULC classification
(Steinhausen et al. 2018 cited by Chaves et al. (2020)). Under the effects of climate change, water resources man-
agement becomes so sensitive, and the most precise input data should be used in hydrological modelling. Many
datasets produce and release global LULC, but their adoption and application need evaluation. Therefore, before

using the global LULC data products, it is necessary to evaluate their suitability in the region. Studies have been
done to analyse the accuracy of remote sensing data and their application in different regions of the world. For
instance, the three global LULC data like the ‘Google’s dynamic world (DW), European Space Agency (ESA)’s

world cover (WC), and ESRI LULC datasets were released in 2020 with strong spatial correspondence’ (Venter
et al. 2022). A study conducted on these three LULC datasets using global ground truth data with a minimum
mapping unit of 250 m2 revealed that the ESRI had the highest overall accuracy (75%) compared with DW

(72%) and WC (65%) (Venter et al. 2022). When these data products were evaluated ‘using the European
ground truth data from LUCAS (Land use/cover area frame survey) with a minimum mapping unit of’
,100 m2, WC showed the highest accuracy (71%) compared with DW (66%) and ESRI (65%) (Venter et al.
2022). The interesting point of this research is the accuracy of ESRI and DW datasets on the global scale,
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whereas, the WC dataset represented more precision on the European scale. Thus, each LULC dataset can rep-
resent a certain precision in some areas, but not for all regions.

The CORINE and Landsat 7 ETM LULC datasets were investigated by Cuceloglu et al. (2021) to evaluate their

accuracy in the Omerli River Basin of Istanbul. The LULC data were both obtained in the year 2006 and inves-
tigated employing the soil and water assessment tool (SWAT) model. The result was quite similar in terms of
surface runoff (SF) and actual evapotranspiration; however, different spatial distribution was observed especially
in urbanized sub-basins (Cuceloglu et al. 2021). A comparison between two satellite images (Landsat 8 and Sen-

tinel 2) was done using the Google Earth Engine (GEE) to evaluate the accuracy of classified LULC data.
Application of this research in Kabul City indicated that Sentinel-2 satellite images can produce more precise
LULC data than Landsat 8 (Ahady & Kaplan 2022). Four LULC datasets were considered to investigate their

accuracy in the Indochina Peninsula as the research area. Among LSV10, GLC_FCS30, ESRI10, and Globe-
land30, the overall accuracy of LSV10 was detected as the highest (83.25%) and GLC_FCS30 was evaluated
as the lowest (72.27%) accurate (Wang et al. 2022). Due to variations in the geology and environmental charac-

teristics of regions, utilizing remote sensing data requires investigation and accuracy assessment.
Hydrologic responses against climate and land cover change become so sensible in watersheds that are located

in arid regions (Zhou et al. 2013; Getachew et al. 2021; Serur & Adi 2022 cited by Ahmadi et al. (2022)). To have

accurate forecasting, researchers and water managers need to investigate the performance of models and data-
sets. A reliable runoff estimation in hydrological modelling requires developing and applying various
techniques to make the models more precise (Althoff et al. 2021). In recent years, the SWAT model is one of
the most popular tools in hydrological modelling, which widely utilizes in different parts of the world. A study

was conducted by Liu et al. (2018) to compare the performance of the SWAT model and IHACRES (‘Identifi-
cation of unit Hydrograph and Component flows from Rainfall, Evapotranspiration, and Streamflow’) model
in streamflow simulation of Naoli Watershed, Northeast China. This study has shown that the SWAT model

potentially give better results for hydrological modelling and water resources planning and management. Nilawar
& Waikar (2018) used the SWAT model to analyse the effects of climate and land use change on the streamflow
and sediment simulation in the Purna River Basin, India. This study revealed that the SWAT model can simulate

long-term hydrological processes in the Purna Watershed. Based on a study conducted in the Segura Watershed
to analyse the influence of climate change and deforestation, the SWAT model accurately replicated monthly
streamflow considering climate and land use change (Senent-Aparicio et al. 2018).

Due to the lack of observed data in Afghanistan, utilizing remotely sensed data is the only option for hydro-

logic calculations and climate change analysis. The vulnerable water resources to climate change in
Afghanistan is another issue in addition to many problems, such as data scarcity, non-stable government,
and economic problems. Researchers in this country mostly use the LULC data that was prepared by UN-

FAO in 1993 and 2003. Whereas, in the past two decades, there were major developments in urban and agri-
cultural lands. To have better control over the water resources of a watershed, researchers need accurate and
reliable input data for hydrological modelling. Furthermore, the performance of models in streamflow simu-

lation plays an important role in the hydrological modelling of ungauged watersheds. In recent years,
researchers and designers have utilized different hydrological models in various parts of Afghanistan.
Among the models, the SWAT model was employed in hydrological modelling at some river basins in the

country. For example, the SWAT model was applied in the simulation of SF in the Balkhab River Basin
during 2013–2018. The land cover atlas of the Islamic Republic of Afghanistan was used in the hydrological
modelling of the Balkhab Watershed, this LULC was prepared by UN-FAO in cooperation with the Ministry
of Agriculture, Irrigation and Livestock in the year 2010. The study revealed satisfactory results for all four

sub-basins of the Balkhab Catchment (Husainzada & Lee 2021).
Simulation of SF and sediment yield in the Salma Dam’s Watershed has been done utilizing the SWAT model

and the obtained result was satisfactory (Sediqi et al. 2019; Husainzada & Lee 2021). Simulating the discharge in

the Helmand River Basin from 1969 to 1979 has been performed using the SWAT model and the model outcome
was utilized to evaluate the 1973 agreement of the Helmand River in southern Afghanistan (Hajihosseini et al.
2016). Various parts of the country need clarification in the application of remote sensing datasets and hydrologic

models. In recent years, studies conducted to address the application of LULC datasets utilizing various methods
on some river basins of Afghanistan. However, there are very limited studies to address the application of ESRI
2020 and Landsat 8 datasets in hydrological modelling using the SWAT model in the Kokcha River Basin. Accu-
rate and reliable LULC datasets have not been clarified by evaluating the datasets in the SWAT model. The main
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objective of this study was to evaluate the accuracy of LULC datasets from different sources in hydrological mod-
elling using the SWAT model. The datasets are ESRI global LULC and Landsat 8 satellite imagery.

MATERIALS AND METHODS

This study was conducted on a mountainous area that is partly covered by permanent snow/ice. All input data in
the SWAT model were obtained from remote sensing sources. Two different LULC datasets were investigated in

hydrological modelling. The SWAT model was run by using every LULC data separately and the other input data
were utilized from the same sources. The model outputs were calibrated and validated based on observed river
discharge employing the SWAT-calibration and uncertainty programme (SWAT-CUP) to evaluate the variations

between the two models.

Study area

The study area is Kokcha Watershed, a sub-basin of the Amu Darya River Basin, positioned between 35.436°–
36.463° latitude and 69.481°–71.652° longitude with a 20,139 km2 area. Altitudes in the catchment area range

between 480 and 6,737 m (Figure 1). Maximum and minimum temperatures in the Kokcha Basin range from
24.5 °C in the summer to �33.0 °C in the winter. Precipitation falls during the winter months of January and Feb-
ruary when the air temperature is below 0 °C in the watershed. This is a great advantage of the study area that

converts the precipitation into ice and saves them for other seasons to feed the river and supply peak water
demand.

Description of the SWAT model

The United States Department of Agriculture (USDA), agriculture research services developed the SWAT model
(Arnold et al. 1998). It is a hydrological model that is employed to specify the quantity and quality of water and
sediment yield (Shivhare et al. 2018). The SWAT model is a continuously under-development model that was
used around different countries over long periods for modelling large and complex watersheds. ‘In the SWAT

Figure 1 | Location of Kokcha Basin.
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model, the basin is subdivided into multiple sub-basins, each sub-basin is divided into hydrological response units
(HRUs) that consist of unique homogenous combinations of soil and land use properties’ (Arnold et al. 2012).
The SWAT model utilizes the water balance equation in watershed modelling (Neitsch et al. 2011):

SWt ¼ SW0 þ
Xi¼t

i¼1

(Rday �Qsurf � Ea �Wperc �Qgw) (1)

When Rday is the quantity of precipitation (mm/day), t is the time (day), runoff (Qsurf) is measured in mm/day,
evapotranspiration (Ea) is measured in mm/day, percolation (Wperc) is measured in mm/day, and return flow (RF)

(Qgw) is measured in mm/day. SWt and SW0 are the last and first soil water contents, respectively (Liu et al.
2018).

The SWAT model needs spatial data representation like a digital elevation model (DEM), soil map, and the

LULC of the watershed. Climate data, including precipitation, maximum and minimum air temperatures, wind
speed, solar radiation, and relative humidity in daily or hourly time steps are needed as input data. To simulate
potential evapotranspiration (PET), the SWAT model uses the Penman–Monteith, Priestley–Taylor, and Har-
greaves methods. In the absence of weather data in modelling, the SWAT model can generate the required

climate data. There are two alternative methods to simulate SF using the SWAT model: the Green–Ampt and
the USDA’s soil conservation service’s (SCS)-curve number (CN) methods (USDA 1972; Hallouz et al. 2018).

Input data and model setup

For hydrological modelling, the accuracy of input data is the most considered issue for reaching appropriate
results. However, ground-based data deficiencies are a big challenge in remote areas and most parts of developing

countries. Satellite-based and remotely sensed information is an option to fill the gap of data scarcity in the hydro-
logical modelling of ungauged watersheds (Li et al. 2012). In this research, the DEM with 30 m resolution was
acquired from the United States Geological Survey (USGS)’s shuttle radar topography mission (STRM) (www.

earthexplorer.usgs.gov). The DEM was masked and projected in UTM_N42 using ArcGIS 10.5 to be ready for
the SWAT model. The slope and stream network data are derived from DEM with standard flow accumulation.
Land use/land cover (LULC) data were obtained from two different sources.

The first LULC data produced by the classification of Landsat 8 OLI/TIRS C1 Level 1 satellite imagery and

aerial photographs, with 30 m spatial resolution downloaded considering August 2020. There are five LULC
types identified by supervised classification and maximum likelihood method, which are bare ground, snow/
ice, urban area, vegetation, and water (Figure 2(a)). The second LULC data was extracted from the ESRI 2020

global LULC dataset that has a 10 m spatial resolution (Figure 2(b)). This high-resolution ‘Land cover map
was built using European Space Agency (ESA) Sentinel-2 satellite imagery and developed using a new machine
learning workflow teaming with the new ESRI Silver Partner Impact Observatory as well as long-time partner

Microsoft’ (Esri 2021). There are nine types of LULC classes in the area, which are dominated by scrub/shrub

Figure 2 | Kokcha LULC and soil map: (a) Landsat 8 2020; (b) ESRI 2020; and (c) Kokcha soil map.
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following the bare ground, snow/ice, crops, built area, water, trees, grasses, and flooded vegetation. Soil data were
clipped from UN-FAO global soil map shapefile database and projected in the UTM_N42 projection system using
ArcGIS 10.5 to be ready as input data for the SWAT model (Figure 2(c)). There are four types of soils in the

Kokcha Watershed coded as I-B-U-2c (Lithosols, Xerosols, Chernozems), I-X-c (Lithosols, Xerosols, Cherno-
zems), Xk4-2b (Calcic Xerosols), and Glacier.

The precipitation data was acquired from tropical rainfall measurement mission (TRMM_3B42) version 7 in a
daily time step that has 0.25°� 0.25° spatial resolution. This data product is a result of a collaboration between the

NASA and the Japanese Aerospace Exploration Agency (JAXA), which is known as the TRMMmulti-satellite pre-
cipitation analysis (TMPA) (GES DISC 2015). The first precipitation radar (PR) in space is located in the
observatory TRMM, which was launched in 1997 into a nearly circular orbit of around 92.5min (GES DISC

2015). The TRMM satellite constellation makes use of several satellites, including the PR, TRMM microwave
imager (TMI), and visible infrared scanner (VIRS) (Elachi & Van Zyl 2006). The maximum and minimum air
temperatures, solar radiation, wind speed, and relative humidity for each of the 10 hydro-meteorological stations

that are available in the watershed were obtained from the NASA POWER data collection (https://power.larc.
nasa.gov). For local and international data requests, the POWER data archive offers a 0.5� 0.5-degree resolution
(https://data.nasa.gov). The observed monthly streamflow data from 2008 to 2019 was obtained from the water

resources department of the National Water Affairs Regulation Authority (NWARA), Afghanistan.
The model simulation was performed from 2008 to 2019 with 2 years (2008 and 2009) warm-up period. In the

model setup, the SCS-CN was chosen in runoff estimation, Penman–Monteith method was selected in PET cal-
culation due to its good performance in the region. Also, the model printout was chosen as a monthly time scale.

In this study, Hargreaves and Penman–Monteith methods were employed in the PET estimation and the obtained
result from the Penman method seems better than the Hargreaves method. Using DEM data and the hydrological
analysis tool in ArcGIS software, the SWAT model splits the basin into 25 sub-basins. HRUs affect by a combi-

nation of LULC, soil map, and slope of the catchment, there were 464 HRUs defined in the Kokcha Watershed
using Landsat 8 LULC data, whereas utilizing ESRI LULC data, 25 sub-basins and 318 HRUs were created,
although the setting for slope, soil, and LULC map were considered the same for each of the model setups.

Soil and slope are not more effective in the creation of HRUs due to not being variable over short periods,
but LULC data is the main cause of differentiation in generating HRUs.

The SWAT-CUP was employed for the calibration of parameters. This application was created to analyse uncer-
tainty and performs calibration and validation of the SWAT model (Abbaspour et al. 2017). Based on studies

conducted by Rostamian et al. (2008), the sequential uncertainty fitting version 2 (SUFI-2) method of SWAT-
CUP has good performance in large watersheds. In this study, the SUFI-2 algorithm was employed for the cali-
bration of parameters. The effectiveness of the SWAT model was evaluated employing the coefficient of

determination (R2) and Nush–Sutcliffe efficiency (NSE), these two model efficiency coefficients are calculated
based on the following equations (Wang et al. 2018):

R2 ¼

Pn
i¼1

(Oi �O)(Pi � P)
� �2

Pn
i¼1

(Oi �O)
2 Pn
i¼1

(Pi � P)
2

(2)

NSE ¼

Pn
i¼1

(Oi �O)
2 � Pn

i¼1
(Pi �Oi)

2

P
(Oi �O)

2 (3)

In Equations (2) and (3), the observed value is indicated in O as the mean value, Oi is the ith of observed value

and Pi shows the ith of simulated values, respectively, the mean value of the simulated values shown in P, and n is
the total count of the sample pairs (Wang et al. 2018).

While calibrating and validating the model, the selection of parameters is the most time-consuming process to

find appropriate parameters that fit the study area and give a satisfactory result. Therefore, the modeller must con-
sider the parameter values for calibrating to reach a very good outcome. The analyst will need to have some
experience and knowledge of hydrology to define the initial ranges of the parameters that will be optimized
(Abbaspour et al. 2007). Local sensitivity (one-at-a-time) and global sensitivity analysis (all-at-a-time (AAT)) are
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generally the two types of model sensitivity analysis. There is a correlation between parameters in the local sen-
sitivity analysis, that are fully fixed to those worth whose precision is unknown while their simplicity and
quickness are the advantages (Abbaspour et al. 2017). The parameter ranges and number of runs in the AAT sen-

sitivity analysis undoubtedly have an impact on the relative sensitivity of the parameters, which is considered a
form of limitation (Abbaspour et al. 2017). Giving reliable results is the advantage of AAT (Abbaspour et al.
2017). In this research, sensitive parameters, which are described in Table 1, were selected for model calibration
and validation. The sensitivity investigation was carried out using global sensitivity and the resulting list of sen-

sitive parameters was calibrated versus the observed stream discharge data from the general outlet of the Kokcha
Watershed (Khwajaghar).

Calibration (2010–2014) and validation (2015–2019) using proper parameters have been done with the coeffi-

cient of determination (R2) as the objective function for both models. ‘Global sensitivity analysis is defined by
P-value and t-stat. The larger, in absolute value, the value of the t-stat, and the smaller the P-value, the more sen-
sitive the parameters’ (Abbaspour et al. 2017). After determining parameters and their value ranges, model

calibration is executed using SWAT-CUP to calibrate the model parameters.

RESULTS AND DISCUSSION

LULC data that are produced by two independent groups can be different in classes and contents. The ESRI

LULC data released in 2020 has a 10 m spatial resolution, according to this dataset, the study area is dominated
by scrub/shrub. Landsat 8 satellite imagery with 30 m resolution was classified to produce the LULC data for the
research area. Based on the classification of Landsat 8, the LULC in the Kokcha Watershed is dominated by bare
ground. Landsat 8 was classified into five LULC classes, whereas there are nine LULC types in the ESRI dataset

(Figure 2(b)). In Figure 3(a), the natural colour of Landsat 8 (bands 4, 3, and 2) represents a considerable area that
is covered by snow. However, in the ESRI LULC data with 10 m resolution, the area is covered by scrub/shrub.
This variation between the two datasets can be due to the coarse resolution of Landsat 8, also in the mountainous

area, the availability of rocks with white colour could be misidentified as snow. Landsat 8 was downloaded in
August 2020, when the temperature of the region states at maximum and the snow/glacier-covered area
should be at a minimum.

In the model output using each LULC data, there are some changes in values of average CN, PET, evaporation
and transpiration (ET), SF, lateral flow (LF), RF, percolation (Perc), revap from the shallow aquifer (RSA), and
recharge to deep aquifers (RDA). The water balance elements correlate with each other and every element is
affected by changes in the other components. Table 2 shows the variations in values of elements considering

Table 1 | Parameters and their calibrated values

No Parameters Explanation
Fitted
value Min_value Max_value

1 CN2 SCS runoff CN 9.102 �6.15 11.08

2 ALPHA_BF Base flow Alpha factor (days) 0.030 0.00 0.06

3 GW_DELAY Time interval for recharge of the aquifer (days) 46.258 13.94 60.84

4 GWQMN Threshold depth of water in the shallow aquifer required for RF to
occur (mm)

1.334 1.19 1.49

5 OV_N Manning’s ‘n’ value for overland flow 0.205 0.19 0.22

6 SOL_AWC () Available water capacity of the soil layer 0.858 0.77 0.92

7 SURLAG Delay time of direct SF (days) 10.385 7.18 10.96

8 PPERCO Phosphorus percolation coefficient 15.949 15.34 16.04

9 SFTMP [OPTIONAL] Snowfall temperature. 2.351 1.59 3.08

10 SOL_K () Saturated soil hydraulic conductivity (mm h� 1) 0.561 0.54 0.78

11 SLSUBBSN Average slope length (m) 114.546 59.99 120.01

12 HRU_SLP Average slope steepness 0.218 0.15 0.22

13 ESCO Soil water evaporation compensation factor (dimensionless) 0.336 0.31 0.52
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each of the LULC datasets. For example, the average CN in the model using ESRI LULC data is less than using
Landsat 8 data. The less values of CN represent the reduction of runoff in the watershed. The higher values of CN

represent a much impervious area in the basin that cause to increase in surface flow. The interrelation among
water balance elements is indicated in Table 2. When the average CN decreases from 86.21 to 82.01, the SF
drops from 164.26 to 132.75 mm in the Landsat 8 and ESRI data, respectively. Furthermore, PET decreased

from 729 to 724.8 mm, whereas ET rose from 161.7 to 167.1 mm using the previously mentioned datasets
accordingly.

In the calibration and validation of the model using the ESRI LULC dataset, the most sensitive parameters are

GW_DELAY, and ALPHA_BF followed by SFTMP, CN2, and PPERCO. However, based on Landsat 8 LULC
data, the five most susceptible parameters are ALPHA_BF, GW_DELAY, SOL_K, HRU_SLP, and SOL_AWC.
Figure 4 shows the parameters and selection method of their values in model calibration and validation utilizing

the ESRI LULC dataset. Based on the sensitive parameters in the watershed, both LULC datasets represent time
intervals for recharge of the aquifer (GW_DELAY) and baseflow alpha factor (ALPHA_BF) as the two most sen-
sitive parameters for runoff generation. The sensitivity of groundwater-related parameters in the area depends on
the types of land cover and resolution of LULC datasets in runoff modelling.

The better accuracy of ESRI LULC data can be due to the higher resolution of the dataset, whereas Landsat 8
has a 30 m spatial resolution, and seems complicated to identify each land use class in the small areas. A higher
resolution of satellite sensors can differentiate the land cover in mountainous regions that are mostly rocks. How-

ever, identifying the changes between rocks with bright colours and snow/ice-covered areas can be challenging

Figure 3 | Changes in identified land cover classes: (a) Landsat 8, natural colour; (b) ESRI LULC; and (c) Landsat 8 LULC.

Table 2 | Changes in values of water balance elements

LULC datasets Average CN HRUs PET ET SR LF RF Perc GW

Landsat 8 86.21 464 729 161.7 164.26 28.26 51.82 66.04 17.75

ESRI 2020 82.01 318 724.8 167.1 132.75 28.71 72.17 90.3 19.01

SR, surface runoff.
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with low-resolution of satellite images. The changes in water balance elements are indicated in Table 2. The most
considerable changes between two datasets are in Perc and RF. Higher amount of percolation in the model using

the ESRI dataset shows a more permeable area in the watershed, however, utilizing Landsat 8, the permeable
regions are less.

The model efficiency coefficient considers both datasets in the calibration and validation of the model range in

good class (Table 3). However, the values of the coefficients seem better by utilizing ESRI LULC datasets. Based
on the NSE values, which range between 0 and 1, the model using ESRI LULC data in the calibration period
gives a 5.5% better result than utilizing LULC data from the classification of Landsat 8. Furthermore, considering
the validation period in both LULC datasets, the value of NSE in this period is higher in ESRI than in Landsat

8. The comparison of water balance elements in Table 2 and model efficiency coefficients in Table 3 considering
both LULC datasets shows that there is a slight difference between the two datasets in respect of their accuracy.
In Table 3, the higher values of R2 and NSE represent the better compatibility of simulated streamflow to

observed river flow. The model outputs from each LULC dataset have been shown in Figures 5 and 6, separately.

Figure 4 | Sensitive parameters graphical show.

Table 3 | Model efficiency coefficient

Datasets R2 NSE PBIAS

Landsat 8 Calibration 0.74 0.64 17.8
Validation 0.83 0.69 24.5

ESRI 2020 Calibration 0.77 0.70 17.8
Validation 0.82 0.74 21.0

Figure 5 | Model calibration and validation using Landsat 8 LULC data.
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In Table 4, the classification of indices is indicated. R2 in both the calibration and validation of model ranges is in

a very good class. However, according to values in NSE, the model matches in good class for both calibration and
validation. ‘The objective function values classified as very good (0.75,R2� 1), good (0.6,R2� 0.75), satisfac-
tory (0.5,R2� 0.6), bad (0.25,R2� 0.5) and inappropriate (R2, 0.25) classes’ (Moriasi et al. 2007).

As a whole, the result of the model using the LULC data from the ESRI 2020 dataset is slightly better than

Landsat 8 LULC data that indicates the accuracy of ESRI LULC data 5.5% more accurate than Landsat 8
LULC data. In this study, all input data were used from remotely sensed sources, which are freely accessible.
So, it can be an important reference for hydrological modelling in data-scarce regions.

CONCLUSION

In the situation of the changing climate and population growth, the importance of hydrological modelling is rising

continuously. Accurate input data in hydrological modelling is an important issue, however, data scarcity is a big
challenge in most parts of the world and in developing countries. This study was assigned to investigate the accu-
racy of two LULC datasets to indicate how accurate they were for hydrological modelling. The ESRI 2020 global
LULC data and the LULC data produced by the classification of Landsat 8 satellite imagery were investigated in

this research. Landsat 8 satellite imagery was downloaded in the year 2020. The SWAT model was employed for
hydrological modelling. The Penman–Monteith method was considered for PET estimation due to its better per-
formance than the Hargreaves method in the region. The runoff estimation method was selected as SCS-CN and

model calibration and validation were performed using SWAT-CUP for both models using each LULC dataset
separately.

The obtained results from this research indicated the accuracy of both LULC datasets and the good perform-

ance of the SWAT model, whereas the resolutions of the LULC datasets are 10 and 30 m in the ESRI and Landsat
8 datasets, respectively. The accuracy of ESRI global LULC data seems slightly better and gives a 5.5% more pre-
cise result than LULC data produced by the classification of Landsat 8 satellite imagery. Identifying urban areas

from the Landsat 8 images seems complicated due to the poor urban area of the study region and the

Table 4 | Statistical indices classification

R2 NSE PBIAS Classification

0.75,R2� 1.00 0.75,NSE� 1.00 PBIAS�+10 Very good

0.6,R2� 0.75 0.6,NSE� 0.75 +10� PBIAS�+15 Good

0.5,R2� 0.6 0.5,NSE� 0.6 +15� PBIAS�+25 Satisfactory

0.25,R2� 0.5 0.25,NSE� 0.5 +25� PBIAS�+50 Bad

R2� 0.25 NSE� 0.25 +50� PBIAS Inappropriate

Source: Adapted from Van Liew et al. (2003), Fernandez et al. (2005), and Moriasi et al. (2007).

Figure 6 | Model calibration and validation using ESRI 2020 LULC data.

H2Open Journal Vol 6 No 1, 72

Downloaded from http://iwaponline.com/h2open/article-pdf/6/1/63/1187190/h2oj0060063.pdf
by guest
on 25 April 2023



low-resolution of Landsat 8. Therefore, it is recommended to use the ESRI 2020 LULC dataset for hydrological
modelling using the SWAT model. This research was conducted in the Kokcha Watershed, a semi-arid region
located in northern Afghanistan. The methodology used in this study can be applied to other catchments, particu-

larly those located in semi-arid areas with similar topography and environmental characteristics. Due to the
significance of LULC data in hydrological modelling and runoff generation, for filling the gap of ground-based
data deficiency, it is recommended to conduct similar research using newly released LULC data from remote sen-
sing sources.
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