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Abstract

Several perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been identified as chemicals of concern in the
environment due to their persistence, global ubiquity, and classification as reproductive and developmental toxicants,
endocrine disrupters, and possible carcinogens. Multiple PEASs are often found together in the environment due to
product manufacturing methods and abiotic and biotic transformations. Treatment methods are needed to effectively
sequester or destroy a variety of PFASs from groundwater, drinking water, and wastewater. This review presents a
comprehensive summary of several categories of treatment approaches: (1) sorption using activated carbon, ion
exchange, or other sorbents, (2) advanced oxidation processes, including electrochemical oxidation, photolysis, and
photocatalysis, (3) advanced reduction processes using aqueous iodide or dithionite and sulfite, (4) thermal and
nonthermal destruction, including incineration, sonochemical degradation, sub- or supercritical treatment, microwave-
hydrothermal treatment, and high-voltage electric discharge, (5) microbial treatment, and (6) other treatment processes,
including ozonation under alkaline conditions, permanganate oxidation, vitamin-B, and Ti(Ill) citrate reductive
defluorination, and ball milling. Discussion of each treatment technology, including background, mechanisms, ad-
vances, and effectiveness, will inform the development of cost-effective PFAS remediation strategies based on envi-
ronmental parameters and applicable methodologies. Further optimization of current technologies to analyze and
remove or destroy PFASs below regulatory guidelines is needed. Due to the stability of PFASs, a combination of
multiple treatment technologies will likely be required to effectively address real-world complexities of PFAS mixtures
and cocontaminants present in environmental matrices.

Keywords: destruction; fluorotelomer alcohol (FTOH); perfluorinated compounds; perfluorooctane sulfonic acid
(PFOS); perfluorooctanoic acid (PFOA); polyfluorinated compounds; processes; remediation; transformation;
treatment

Introduction chategui et al., 2014). PFASs can also be transported globally
through several physicochemical and biological processes
and found in remote and pristine locations (Paul and Jones,
2009; Butt et al., 2014).

There are several provisional health-based guidelines for
PFASs in drinking water. These guidelines range from a
lifetime drinking water health advisory of 70 ng/L for com-
bined perfluorooctanoic acid (PFOA) and perfluorooctane
sulfonic acid (PFOS) concentrations and 300-7,000 ng/L for
C4-C7 PFASs (Wilhelm et al, 2010; USEPA, 2016).
Therefore, industries have shifted toward production of
shorter-chain PFASs (Wang et al., 2014b, 2014c).
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ERFLUOROALKYL AND POLYFLUOROALKYL substances

(PFASs) are man-made, environmentally persistent
contaminants used in many industrial, military, and con-
sumer products, including nonstick coatings, electronics, and
aqueous film-forming foams (AFFFs) (Houtz et al., 2013;
Wang et al., 2014b, 2014c; Kotthoff et al., 2015). Many
studies demonstrate that PFASs are reproductive and devel-
opmental toxins, endocrine disrupters, possible carcinogens,
and bioaccumulative (Ding and Peijnenburg, 2013; Gorro-
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616 MERINO ET AL.
TABLE 1. FILTRATION OF PERFLUOROALKYL SUBSTANCES
NaCl PFAS
rejection [PFAS], Time rejection
Compound Material Conditions (%) (mg/L) (h) (%) References
Nanofiltration
PFOA, PFBA, NF270 200L, 18°C, pH 6.7, >50% 0.001 24 93-99  Appleman
PFPeA, PFHXA, 0.17-0.97 MPa, et al. (2013)
PENA, PFDA feed flow=1L/min
PFOS, PFBS, NF270 200L, 18°C, pH 6.7, >50% 0.001 24 95-99  Appleman
PFHxS 0.17-0.97 MPa, et al. (2013)
feed flow=1L/min
PFOS DK 25°C, pH 4, 1.38 MPa, 66.4 10 96 90-99  Tang et al. (2007)
feed flow=1.37 L/min
NF270 25°C, pH 4, 1.38 MPa, 56.9 10 96 90-99  Tang et al. (2007)
feed flow=1.37 L/min
NF90 25°C, pH 4, 1.38 MPa, 94.4 10 96 90-99  Tang et al. (2007)
feed flow=1.37 L/min
Reverse osmosis
PFOS SG 25°C, pH 4, 1.38 MPa, 95.2 10 96 >99 Tang et al.
feed flow=1.37 L/min (2006, 2007)
LFC1 25°C, pH 4, 1.38 MPa, 97.3 10 96 >99 Tang et al. (2007)
feed flow=1.37 L/min
LFC3 25°C, pH 4, 1.38 MPa, 98.5 10 96 >99 Tang et al.
feed flow=1.37 L/min (2006, 2007)
BW30 25°C, pH 4, 1.38 MPa, 97.9 10 96 >99 Tang et al.
feed flow=1.37 L/min (2006, 2007)
ESPA3 25°C, pH 4, 1.38 MPa, 94.9 10 96 >99 Tang et al.

feed flow=1.37 L/min

(2006, 2007)

and drinking water treatment plants do not effectively re-
move PFASs unless reverse osmosis, nanofiltration, or acti-
vated carbon (AC) is utilized, but these need to be frequently
renewed or changed (Tang et al., 2006, 2007; Takagi et al.,
2008; Shivakoti et al., 2010; Thompson et al., 2011; Ap-
pleman et al., 2013; Flores et al., 2013; Table 1).

Other removal methods use extreme conditions that are
costly, such as high temperature and pressure. The structures
and physicochemical properties (e.g., partitioning constants
and solubility) of many PFASs are still uncertain, which pose
challenges for their treatment (Rayne and Forest, 2009).
Several different treatment methods may need to be applied
to cost-efficiently remove PFAS mixtures. Currently, many
studies focus on removal of the two most studied PFASs in
the environment, PFOS and PFOA. However, most of these
methods produce short-chain PFASs that have unknown
toxicity.

This review article presents a synopsis of recently de-
scribed removal methods and discusses the viability and ef-
fectiveness of these methods under the following categories
(Tables 1-8): (1) sorption, (2) advanced oxidation processes
(AQOPs), (3) advanced reduction processes (ARPs), (4) ther-
mal and nonthermal destruction, and (5) microbial treatment.
All abbreviations, definitions, and equations are listed in
Supplementary Tables S1-S6.

Discussion

Sorption processes

Sorption of PFASs has been studied for a wide variety of
environmental matrices, mineral surfaces, and other adsor-
bents (Table 2). In all studies, it was assumed that PFAS

molecules formed a monolayer on the adsorbent since
PFAS concentration was lower than the critical micelle
concentration.

Sorption occurs through two main interactions: (1) elec-
trostatic and (2) hydrophobic. Meng et al. (2014) also dem-
onstrated that air bubbles positively affected the sorption of
PFOS onto carbonaceous materials, such as carbon nanotubes
(CNTs), graphene, and powdered activated carbon (PAC),
and the sorption was dependent on the surface polarity of the
sorbent. PFOS prefers to exist at the air—water interface, re-
sulting in the C-F chain partitioning into the air bubble, while
the polar head group stays in aqueous solution. The effects
of air bubble properties on PFASs have also been observed in
sonolytic degradation and high-voltage electric discharge
reactions.

Electrostatic interaction is a common sorption mechanism
for PFASs. Since the pK, values of PFOA and PFOS are 0.5
(Vierke et al., 2013) and —2.3 (European Food Safety Au-
thority, 2008), respectively, these compounds will likely be
in anion form and sorb strongly to positively charged mate-
rials due to electrostatic interactions. Thus, pH plays an im-
portant role in PFAS sorption processes since it will affect the
adsorbent’s charge (Zhou et al., 2010a). For example, John-
son et al. (2007) found that increasing pH caused two min-
erals, goethite and kaolinite, to become negatively charged,
decreasing PFOS sorption. Electrostatic interaction can also
change with monovalent cation concentrations, such as Na®,
due to increasing ionic strength, leading to compression of
the electrical double layer (Wang and Shih, 2011; Xiao et al.,
2011; Wang et al., 2012).

Hydrophobic interactions also play an important role in
PFAS sorption. While previous studies have demonstrated
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the importance of electrostatic interactions, ~90% PFOS
removal was observed on negatively charged silica, regard-
less of changes in pH, ionic strength, and Ca?* concentration
(Tang et al., 2010). Hydrophobic interactions likely occur
between the perfluoroalkyl tail and the hydrophobic surfaces
of the sorbent, especially for longer C-F chain lengths
(Higgins and Luthy, 2006; Zhou et al., 2010a; Zhang et al.,
2011, 2013a; Du et al., 2015). The addition of each extra CF,
moiety increases the hydrophobicity of PFASs, resulting in
increased sorption of longer-chain PFASs. Longer chains
may also outcompete shorter chains in sorption pro-
cesses (Xiao et al., 2011; Du et al., 2015). In addition, per-
fluorosulfonic acids (PFSAs), such as PFOS, contain one
more C-F bond compared with the corresponding per-
fluorocarboxylic acid (PFCA), such as PFOA, resulting in
stronger hydrophobic properties and increased sorption of
PFSAs compared with PFCAs (Zhou et al., 2010b).

Sorption processes: activated carbon

Granular activated carbon (GAC) and PAC are two of the
most studied adsorbents for PFASs. Activated carbons (ACs)
have a porous structure with strong heterogeneous surfaces
and has been used to sorb various compounds due to its low
cost and versatility (Marsh and Reinoso, 2006). ACs are
produced from almost any carbonaceous materials, and cur-
rent research has analyzed PACs, BioNuchar, activated car-
bon fibers (ACF15, ACF20, ACF25), Ambersorb563,
bamboo-derived AC (BAC), and several commercial GACs,
including Filtrasorb (F) 300, F400, F600, URV-MODI,
1240C, 43765, and 43767 (Ochoa-Herrera and Sierra-
Alvarez, 2008; Qu et al., 2009; Yu et al., 2009; Appleman
et al., 2013; Du et al., 2014, 2015; Schuricht et al., 2014;
Pramanik et al., 2015; Zhi and Liu, 2015).

GACs were most effective at sorbing longer alkyl chain
lengths with more C-F bonds (e.g., PFOS >PFBS and PFOS >
PFOA) (Ochoa-Herrera and Sierra-Alvarez, 2008; Carter and
Farrell, 2010; Senevirathna et al., 2010). Furthermore, GACs
with higher surface areas and larger micropores to facilitate
diffusion of PFASs, such as BAC, are more advantageous (Du
etal.,2015). Similarly, PAC improves PFAS sorption compared
with GAC due to its larger surface area and increased sorption
sites (Ochoa-Herrera and Sierra-Alvarez, 2008; Qu et al., 2009;
Yu et al., 2009; Bao et al., 2014; Pramanik et al., 2015). For
example, PAC was combined with a membrane bioreactor
(PAC-MBR) consisting of synthetic wastewater and seed sludge
from a municipal wastewater treatment plant and effectively
removed 94.8% PFOS and 90.6% PFOA only when PAC was
added (Yu et al., 2014). In addition, AC absorption has been
recommended by the New Jersey Drinking Water Quality In-
stitute Treatment Subcommittee (Cummings et al., 2015) as one
of the most effective treatment options for removal of PFNA,
PFOA, and PFOS. Municipalities and industrial treatment fa-
cilities in the United States and Europe have carried out few AC
absorption case studies with successful performance cited by the
recommendation.

Sorbent properties strongly influence the sorption of
PFASs. Sorbents made of synthetic polymers were observed
to be more effective than those made of natural materials and
followed the perfluoroalkyl acid (PFAA) sorption efficiency
trend of ACF20 (activated carbon fiber)> AquaNuchar>
Ambersorb 563 >F400 or 1240C>WVB or BioNC (Bio-
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Nuchar) (Zhi and Liu, 2015). Sorbent macroscopic size was
also the dominant factor controlling adsorption uptake. In
addition to size, carbon surface chemistry [e.g., basicity and
pH point of zero charge (pHp,.)] also affected uptake, but
acidity and oxygen content of the sorbents did not.

Sorption processes: ion exchange

Ion exchange can be more efficient than GAC (Lampert
et al., 2007; Carter and Farrell, 2010; Senevirathna et al.,
2010; Schuricht et al., 2014). Lampert et al. (2007) observed
greater removal with six different ion-exchange resins com-
pared with four different other methods: AC adsorption, ad-
sorption onto calcium fluoride solids, evaporation, and
liquid-liquid extraction. For example, US Filter A-714 re-
moved PFOS to <1mg/L (PFOSy=151 mg/g-resin) and
PFOA to 13mg/L (PFOAy=686 mg/g-resin). Shorter re-
moval times have been observed with Amberlite IRA-458
(Carter and Farrell, 2010), Amberlite IRA-400 (Yu et al.,
2009; Senevirathna et al., 2010), Dow Marathon A (Sene-
virathna et al., 2010), Amberlite XAD-7HP (Xiao et al.,
2012), AS-F860 (Schuricht et al., 2014), AS-F500 (Schuricht
et al.,2014), and AW-F100 (Schuricht et al., 2014).

Ion-exchange resins need to be regenerated. This can be
done with a small percentage of NaCl or NaOH and a large
percentage of methanol (Senevirathna er al., 2010; Xiao
et al., 2012; Du et al., 2015). For example, Du et al. (2015)
used 1% NaCl in 70% methanol mixture and reused Am-
berlite IRA 67 for at least five cycles with very little decrease
in removal effectiveness for PFOA, perfluoroheptanoic acid
(PFHpA), and perfluorohexanoic acid (PFHxA). A larger
amount of methanol would be needed to remove longer-chain
PFASs (Xiao et al., 2012). To improve removal of PFASs,
ion-exchange columns could be run in series with regenera-
tion occurring in every other column. In addition, other fac-
tors that need to be considered include the pHp, of the resin
and pH of the solution. For example, Xiao et al. (2012) ob-
served increased PFOS removal for Amberlite XAD-7HP
(pHp, =6.2) with decreasing pH (4.8-7.8) due to increased
electrostatic attraction.

Sorption processes: other sorbents

PFAS sorption has been studied with 12 other sorbents:
molecular imprinted polymers (MIPs) (Yu et al., 2008; Deng
etal.,2009; Zhang et al., 2013a), cationic/anionic surfactants
(Pan et al., 2009), multiwalled carbon nanotubes (MWCNTs)
(Li et al., 2011; Kwadijk et al., 2013), modified organo-
montmorillonite (Zhou et al., 2013a), silica-based adsor-
bents (Zhou et al., 2013b), black carbon (Chen et al., 2009),
magnetic mesoporous carbon nitride (MMCN) (Yan et al.,
2013, 2014), polymeric adsorbents (Schuricht et al., 2014),
mesoporous molecular sieves (Nassi et al., 2014), metal-
organic frameworks (Liu et al., 2015), electrocoagulation
(Lin et al., 2015), and permanently confined micelle arrays
(PCMAs) (Wang et al., 2014a).

Only a few of these sorbents are promising, such as
MWCNTs, MIPs, MMCNs, and sorption with electro-
chemical assistance. MWCNTs need to be combined with
electrochemical assistance (Li et al., 2011) or electrospun
nanofibrous membranes (Dai et al., 2013) to have efficient
removal, but regeneration of MWCNTs requires 90°C to
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achieve only 85% PFOA and PFOS release. Similarly, MIPs
require 40°C and NaOH/acetone (Yu et al., 2008) and can
only be used for targeted PFASs due to polymer-specific
manufacturing.

The most favorable sorption technology for Other Sor-
bents is electrochemical assistance combined with zinc sheet
(anode) and stainless steel (cathode) in an electrocoagulation
reactor (Lin et al., 2015). PFOA and PFOS were removed to
below detection limits within 20 min, and sorption equilib-
rium was reached within 10 min due to production of zinc
hydroxide flocs. This method may be a cost-effective and safe
adsorption removal technology for PFASs since it is currently
being utilized at wastewater treatment facilities and only
needs simple easy-to-operate equipment and low mainte-
nance costs. The energy consumption was 0.18 Wh/L and low
concentrations (0.88 mg/L) of residual zinc ions were de-
tected (US EPA drinking water limit for zinc ions is 5 mg/L).
However, electrocoagulation can result in formation of
chlorinated organic compounds (e.g., trihalomethanes) and
bad taste and odor (Mollah et al., 2004).

Sorption processes: summary

Sorption of PFASs has been shown to be an effective re-
moval method, especially when using AC or ion exchange.
For more information on PFAS sorption techniques, Du ef al.
(2014) have published a detailed review. While sorption can
be cost-effective, treatment processes should consider sor-
bent regeneration and further destruction of sorbed PFASs.
For example, AC can only be moderately regenerated using
methanol or ethanol, and subsequent reuse can result in de-
creased removal percentages (Senevirathna et al., 2010; Pu-
nyapalakul et al., 2013; Chularueangaksorn et al., 2014; Du
et al., 2015).

More research is needed on (1) sorption of other PFASs
and PFAS mixtures and (2) the influence of environmental
matrices (e.g., inorganic ion concentration, organic matter
content), mixtures of PFASs, and cocontaminants. For ex-
ample, environmental matrices, such as soil, sediment, and
sludge from wastewater treatment plants, can impact PFAS
sorption treatment methods due to several factors, including
compression of the adsorbent’s electrical double layer, re-
duction in electrostatic repulsion between adsorbent and
PFASs, and formation of bridges with cations between neg-
atively charged groups and PFASs (Zhou et al., 2010b; Yu
et al., 2012; Kwadijk et al., 2013; Zhang et al., 2013a; Du
et al., 2015; Millinovic et al., 2015; Wang et al., 2015). In
addition, competitive adsorption between PFOA, PFHxXA,
and PFHpA has been shown to negatively affect sorption of
each PFCA onto BAC and Amberlite IRA 67 (Du et al.,
2015).

Advanced oxidation processes

AQOPs that have been tested for PFAS removal include
electrochemical oxidation, photolysis, and photocatalysis.
During these processes, strong, oxidizing, and nonselective
radicals are generated (including *OH, O,*, SO4*", and
CO5*7) that can attack a variety of xenobiotics, such as
pharmaceuticals (Ikehata et al., 2006), phenols and dyes
(Ahmed et al., 2011), and trinitrotoluenes (TNTs) (Ayoub
et al., 2010).
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AOPs: electrochemical oxidation

Electrochemical oxidation destroys contaminants through
two mechanisms: (1) direct anodic or (2) indirect. When
contaminants are destroyed by direct anodic oxidation, con-
taminants will adsorb onto the anode surface and are de-
stroyed by an electron transfer reaction. In indirect oxidation,
contaminants are destroyed in solution by oxidation through
strong oxidants generated by cathodic electrochemical reac-
tions. This process has been used to treat many different
contaminants, including phenols (Cafiizares et al., 2005),
dyes (Chen et al., 2003), and endocrine-disrupting chemicals
(Murugananthan et al., 2007). Electrochemical oxidation can
have long life spans and is versatile, energy efficient, auto-
mated, and cost-effective (Jiittner ef al., 2000). It can also be
used on different volumes of gases, liquids, and solids and is
relatively easy and inexpensive to construct and operate
electrodes. There are a wide variety of electrode materials,
including Pt, IrO,, and RuO,, but for PFAS removal, re-
searchers have studied boron-doped diamond (BDD) thin
film, Ti/SnO,, Ce/PbO,, and Ti/RuO, (Table 3).

Degradation of PFASs through BDD anodes has been the
most studied electrochemical method. PFASs will undergo
direct anodic oxidation, resulting in one-carbon removal
through decarboxylation pathways [Eqgs. (S1)—(S8) in Sup-
plementary Table S6] (Zhuo et al., 2012). This pathway
continuously repeats and shorter-chain PFASs, fluoride ions,
and sulfate ions (PFSAs only) are produced. Hydroxyl radi-
cals formed from water on the BDD anode can also help
mineralize PFASs in solution to elemental or inorganic end
products [Eqgs. (S2) and (S4) in Supplementary Table S6].
Compared with other electrode materials, BDD has a higher
oxygen evolution potential, allowing the formation of more
hydroxyl radicals at low background currents (Zhu et al.,
2008; Panizza, 2010). In addition, hydroxyl radicals are
weakly adsorbed to the BDD electrode and should not in-
terfere with the initial PFAS reaction.

BDD thin film electrodes can effectively degrade PFOA,
PFBA, PFHxA, perfluorodecanoic acid (PFDA), PFBS, per-
fluorohexanesulfonic acid (PFHxS), and PFOS under opti-
mized conditions. For example, PFOA degraded by 97%
(60% fluoride yield) within 2h (Zhuo et al., 2012). For
PFCAs, the defluorination ratios increased with decreasing
chain lengths, while defluorination ratios for PFSAs in-
creased with increasing chain length. The degradation of
PFSAs also led to formation of shorter-chain PFCAs [Eqs.
(S4)—(S8) in Supplementary Table S6]. Similar results were
observed using groundwater collected from a former fire
service training ground (Trautmann et al., 2015). Greater
mineralization of PFOA occurred using the ultra-
nanocrystalline boron-doped conductive diamond electrode
(Urtiaga et al., 2015). Other studies on BDD thin film elec-
trodes were not as successful and took much longer to de-
grade PFOA (Carter and Farrell, 2008; Liao and Farrell,
2009; Ochiai et al., 2011a, 2011c).

A major limitation to BDD thin film electrodes is the cost
and difficulty of building BDD compared with other elec-
trode materials (Panizza and Cerisola, 2009). Other studies
have explored the use of Ti/SnO, anodes (Lin et al., 2012b;
Yang et al., 2015), Ce-doped PbO, film electrodes (Niu et al.,
2012, 2013), and commercially available Ti/RuO, (Schaefer
et al., 2015). For example, 90.3% PFOA degraded (72.9%
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fluoride yield) to shorter-chain PFCAs and fluoride when
using Ti/SnO,-Sb anode (Lin et al., 2012b). However, the
degradation efficiency decreased when pH increased, plate
distance increased, or initial PFOA concentration increased.
The service life of Ti/SnO, anodes is relatively short, but
could be improved upon by doping with SnF, (F-doped Ti/
Sn0,) (Yang et al., 2015).

In general, electrochemical oxidation has some limitations.
Production of toxic by-products may occur when treating
PFAS-contaminated wastewater mixed with other harmful
substances (Trautmann et al., 2015), including chlorine gas,
hydrogen fluoride, bromate, perchlorate, and adsorbable or-
ganic halides. Future research needs to focus on degradation of
different PFASs, including polyfluoroalkyl compounds, over a
range of concentrations and determine the degradation path-
way. Furthermore, only two studies have observed PFAS de-
struction when using electrochemical oxidation in the presence
of AFFF-impacted or PFAS-contaminated synthetic ground-
water (Schaefer et al., 2015; Trautmann et al., 2015). More
studies need to be conducted with environmental matrices to
determine whether electrochemical oxidation is suitable for
PFAS remediation.

AOPs: photolysis and photocatalysis

Photolysis and photocatalysis of PFASs involve the use of
vacuum ultraviolet (VUV, 100-200 nm) or ultraviolet (UV,
200-400 nm) light (Tables 4 and 5). With the addition of a
photocatalyst, such as titania or indium oxide, the ability to
remove PFASs can be enhanced. Heterogeneous photo-
catalytic decomposition occurs when an energy difference is
produced between the valence (VB) and conduction band
(CB) with light exposure (Coronado et al., 2013), allowing
for oxidation—-reduction processes to occur. Common prod-
ucts of photocatalysis are hydroxyl radicals, superoxide
radicals, and secondary radicals of organic substrates.

For successful photocatalysis of PFASs, several conditions
must be considered. The pH of the solution and the pHp,. of
the catalyst with respect to the pKa of the target PFASs are
the two main important factors. Generally, the pH,,. of the
catalyst must be greater than the solution pH to allow for
greater contact with PFASs. Other conditions include light
wavelength and intensity, initial catalyst and PFAS concen-
trations, and water quality (e.g., the turbidity of water, total
organic matter content, dissolved oxygen concentration, and
natural water scavengers, such as bicarbonate). Current
studies on photocatalysis of PFASs mainly utilize UV light,
but VUV may also effectively decompose PFOA by stepwise
radical formation, decarboxylation, HF elimination, and
shorter-chain PFAS formation as described by Equations
(89)—(S13) in Supplementary Table S6. Natural sunlight in
combination with iron and H,O, or persulfate could effec-
tively decompose PFOA (Liu et al., 2013a). Future studies
should optimize conditions for natural sunlight remediation
of PFASs and determine whether VUV in combination with
photocatalysts can decompose PFASs more efficiently.

In all photolysis and photocatalysis studies, decomposition
of PFASs occurs in a stepwise manner. First, a PFAS radical
is activated through exposure to (1) direct photolysis, (2)
radicals and highly reactive intermediates, or (3) to a semi-
conductor material with an energy band gap [Eq. (S9) in
Supplementary Table S6] (Chen et al., 2007; Hori et al.,
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2007b; Wang et al., 2008; Song et al., 2012; Tang et al.,
2012; Phan Thi et al., 2013). More specific reactions that may
take place with different photocatalysts are described in their
respective sections. Products include shorter-chain PFASs,
formic acid, fluoride ions, sulfate ions, and hydrogen. With
longer reaction times, depending on the method used, PFASs
can be degraded to low to nondetectable levels.

AOPs: direct photolysis

Direct photolysis of PFASs, mainly PFOA, has been
studied over a wide range of different gases, wavelengths,
and initial PFAS concentrations, but generally under ambient
temperatures and acidic conditions. For example, more de-
composition of PFOA occurred under oxygen gas compared
with argon-saturated solution (Hori et al., 2004). Direct
photolysis of PFOA can be improved with the addition of
VUV light (185 nm), accompanied by changes in gases, pH,
and temperature. Based on the photon energy values of UV
and VUV light and the average bond energy, the C—C bonds
(bond energy =347.0kJ/mol) in PFOA are likely to be
cleaved by both 254 nm (photon energy =471.1 kJ/mol) and
185nm (photon energy =646.8 kJ/mol), whereas the C-F
bonds (bond energy=552.0kJ/mol) are only likely to be
cleaved by 185 nm (Giri et al., 2011). However, direct pho-
tolysis of PFASs tends to have relatively low removal effi-
ciencies and fluoride yields compared with other processes
(Chen and Zhang, 2006; Giri et al., 2011; Phan Thi et al.,
2013; Cheng et al., 2014), and remediation strategies us-
ing direct photolysis must consider additional treatment
methods.

Presence of oxygen could also play an important role in the
direct photolysis of PFOA (Giri et al., 2012; Jin et al., 2014).
Giri et al. (2012) tested various dissolved oxygen (0—
36.4 mg/L) concentrations with about 90% VUV and 10%
UV light. Less PFOA was decomposed with increasing DO
levels. Jin et al. (2014) observed similar results for PFOS
when using light-emitting 10% VUV and 90% UV. When
using oxygen and air gas or nitrogen gas with H,O,, PFOS
was not decomposed and there was insignificant fluoride ion
production. These observations could indicate other chemical
reactions that coexist with direct photolysis. The impact of
dissolved oxygen on PFAS decomposition under direct
photolysis could be attributed to the scavenging of hydrated
electrons, which are formed during VUV water splitting. A
detailed summary is discussed in ARPs.

The direct photolysis of four other perfluorinated sub-
stances [PFOS, perfluoropentanoic acid (PFPeA), perfluo-
ropropanoic acid (PFPrA), PFBA] (Hori et al., 2007b;
Yamamoto et al., 2007) and one polyfluorinated compound
(4:2 fluorotelomer unsaturated carboxylic acid, FTUCA)
(Hori et al., 2007a) has been examined, mainly as control
groups for experiments to analyze heterogeneous photo-
catalysis. Future studies should analyze whether the optimum
conditions for PFOA decomposition could be used to de-
compose PFAS mixtures efficiently.

AORPs: titania (TiOs) photocatalysis

Photocatalysis of PFOA using titania has been one of the
most studied types of heterogeneous photocatalysis reactions.
Current studies on PFOA decomposition utilize TiO, in an-
atase and rutile forms due to high band gap energies (3.2 and
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3.0eV, respectively) (Linsebigler et al., 1995; Fujishima
et al., 2000; Carp et al., 2004). Two commercially available
TiO, materials have been used (RdH and P25), as well as
home-made TiO, using the sol-gel process. One of the more
successful studies used P25 TiO, nanoparticles with 254 nm
exposure and observed almost complete PFOA degradation
within 4 h based on detection capabilities of LC with a var-
iable wavelength detector (Ochiai et al., 2011b). However,
higher wavelengths (315-400nm) decreased PFOA degra-
dation (Gatto et al., 2015).

Other studies improved TiO, photocatalysis of PFOA by
(1) combining with perchloric acid and an ultrasonic probe
(Panchangam et al., 2009a, 2009b) and (2) doEing with ir-
on:nobium (Fe:Nb), MWCNTs, Cu?", or Fe’" (Estrellan
et al., 2009, 2010; Panchangam et al., 2009a; Song et al.,
2012; Sansotera et al., 2014; Chen et al., 2015; Gatto et al.,
2015). Certain doped TiO, can be effective photocatalysts for
PFOA decomposition due to increased lifetime of electron—
hole pairs and adsorption of compounds to the catalyst sur-
face (Hernandez-Alonso, 2013). For example, a 10:1 ratio
(TiO;:MWCNT) was most effective for PFOA decompo-
sition compared with other ratios (Song et al., 2012).
MWCNTs are stable (e.g., acidic and basic conditions) and
can also accept electrons and reduce recombination between
electron-hole pairs in TiO,. Similarly, Cu-TiO, decomposed
PFOA (91%) within 12h, resulting in greater degradation
compared with Fe3+—Ti02 and shorter-chain PFCAs (19%
defluorination) (Chen et al., 2015). Thus, while doped TiO,
can greatly enhance PFOA decomposition, the type of dopant
needs to be considered to have high removal and fluoride
yields. Future studies should optimize current dopants for
higher fluoride yields and consider testing other PFASs and
varying conditions (e.g., lower energy lamps, different gases,
and different wavelengths).

AOPs: other semiconductor material photocatalysis

Gallium oxide ($-Ga,03) (Zhao et al., 2012; Shao et al.,
2013) and indium oxide (In,O3) (Li et al., 2012b) have also
been studied for PFAS decomposition and have more po-
tential than TiO,. Gallium oxide has a wider bandgap, re-
duction potential, and pHy,, but it is more expensive than
titania. Compared with TiO,, indium oxide promotes faster
conversion of PFASs to PFAS radical, but slower conversion
of H,O and hydroxy groups to hydroxyl radicals. Both
semiconductor materials were able to decompose PFOA
much faster than undoped TiO,. For gallium oxide, within
just 45 min, 100% PFOA degradation (based on the detection
capabilities of a UPLC-MS/MS) with 61% defluorination
yield was observed (Shao er al., 2013). However, special,
synthesized gallium oxide nanomaterial containing sheaf-
like structures must be prepared since commercial gallium
oxide decomposed only 38% PFOA in 3 h (Shao et al., 2013).
These results were similar to those described by Zhao et al.
(2012) for non-nanomaterial gallium oxide. To improve the
reaction with non-nanomaterial gallium oxide, a reductive
additive at basic pH under N, gas is needed, such as 820327
(Zhao et al., 2012).

AORPs: iron photocatalysis

Iron photolysis is also one of the most studied heteroge-
neous photocatalysis mechanisms for PFAS decomposition,
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including PFOA, PFPeA, PFPrA, and PFBA, since iron ions
are abundant and relatively cheap. For PFAS decomposition,
various iron sources have been used to represent both Fe?*
and Fe’ ions and have been tested with 12-15% VUV
(185nm) (Cheng et al., 2014) and H,O, to produce Fenton
reaction. Other metal ions were also tested for their ability to
decompose PFOA, including Cu?*, Mg**, Mn**, and Zn**,
but could only decompose 4.2—7.4% PFOA within 4 h (Wang
et al., 2008).

Oxygen plays an important role in PFOA decomposition
by iron photocatalysis, similar to direct photolysis, and more
PFOA decomposition occurred with oxygen gas compared
with air or nitrogen gas. When using Fe** ions [as Fe,(S04)5]
with oxygen gas, 78.9% PFOA decomposed (38.7% de-
fluorination yield) within 4 h compared with air and nitrogen
gas (Wang et al., 2008). The importance of oxygen and Fe**
ions for iron photolysis of PFOA can be explained by a likely
reaction pathway that involves formation of PFOA and Fe**
complex and oxidation of Fe** by oxy§en [Egs. (S14)—(S17)
in Supplementary Table S6]. Other Fe”* ion sources, such as
FCQ(SO4)3 . 75H20, Fez(C104)3 . 6H20, and F€C13 . 6H20,
could affect PFAS degradation efficiencies (Hori et al.,
2007b).

Iron photocatalysis was greatly improved with the addition
of hydrogen peroxide, producing UV-Fenton reactions.
Generally, H,O, will decompose Fe>" ions without a light
source present, but the reaction [Egs. (S18)—(S22) in Sup-
plementary Table S6] increases with UV-Vis irradiation,
especially with the regeneration of Fe** ions (Chong ef al.,
2010). Within 1h, 87.9% PFOA was decomposed (25.8%
defluorination yield) when Fe** ions (as FeSO,) were used
in conjunction with 1g/L H,O, (Tang et al., 2012). Fe**
ions were more effective than Fe** ions under UV-Fenton
conditions.

PFAS decomposition through UV-Fenton process is a
feasible and applicable AOP. With the addition of H,O,,
PFASs undergo general photocalytic degradation when H,O,
is abundant. Then, the traditional Fenton reaction mechanism
mentioned at the beginning of this section starts and contin-
ues to decompose PFASs (Tang et al., 2012). Future studies
should focus on optimizing pH, Fe** ion concentration, and
H,0; loading for a range of PFAS concentrations, PFAS
mixtures, and environmental matrices.

Modified Fenton’s reaction, known as catalyzed H,0,
propagation (CHP) [Egs. (S23)—(S27) in Supplementary
Table S6], can efficiently decompose PFOA (89% decom-
posed within 2.5h) due to superoxide and hydroperoxide
species (Mitchell et al., 2014). Instead of UV, this method
utilized a high concentration of H,O, with the addition of
initiators (e.g., soluble Fe(Ill), iron chelates, and minerals) to
decompose xenobiotics (Watts and Teel, 2005). CHP has
been successfully used for in situ chemical oxidation (ISCO)
for over 10 years and has been used to treat industrial
wastewater. In addition to PFOA degradation, Mitchell et al.
(2014) could only detect F~ as the main degradation product
[Egs. (S23)—(S27) in Supplementary Table S6].

AOPs: activated persulfate (S,0g°") oxidation

Persulfate has been used to successfully decompose
PFOA, PFDA, and 4:2 FTUCA. This strong oxidant (E°=
2.1V) is highly soluble and can become activated and
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generate free sulfate radicals (SO,4*~, E°=2.6 V) when ex-
posed to UV light, transition metals, hydrogen peroxide,
heat, etc. (Tsitonaki et al., 2010). Sulfate radicals are con-
sidered harmless and can react with organics, water, or hy-
droxyl groups [Eqgs. (S4) and (S28)—(S30) in Supplementary
Table S6]. This increases the oxidation capabilities of per-
sulfate ions toward PFASs since both sulfate and hydroxyl
radicals will interact with PFASs [Eq. (S33) in Supplemen-
tary Table S6]. The reaction will then follow general stepwise
decomposition [Egs. (§9)-(S13) in Supplementary Table S6]
(Lee et al., 2009).

Five studies demonstrated that persulfate can decompose
PFOA, PFDA, and 4:2 FTUCA to shorter-chain PFCAs and
elemental components, such as F~, under oxygen gas, various
wavelengths, ambient temperatures, and acidic pH. For
example, persulfate (50 mM) decomposed PFOA to non-
detectable levels within 4 h (59.1% defluorination yield), and
within 8 h, the fluoride yield increased to 73.8% (Hori et al.,
2005). A lamp requiring less energy (23 W vs. 200 W) was
later applied successfully (Chen and Zhang, 2006). Persulfate
ions could also decompose PFDA when using both UV and
VUV light (Wang et al., 2010). Other sources of sulfate
radicals may be used, such as sulfide ions (as Na,S). Sulfide
ions under N, gas increased the defluorination yield to 45%
due to the ability of S,~ to scavenge species, such as H" and
OH, and allowing for e, to act on PFDA (Wang et al.,
2010). Persulfate can also be used to decompose poly-
fluoroalkyl compounds such as 4:2 FTUCA within a few
minutes (Hori et al., 2007a), but less degradation was ob-
served when using visible light combined with persulfate and
tungsten trioxide (WO;) (Hori et al., 2013a).

Since persulfate has proven to be highly successful in
decomposing PFOA, PFDA, and 4:2 FTUCA, future studies
should determine if persulfate could be used for environ-
mental matrices, especially as an ISCO oxidant.

AOPs: other UV-induced oxidation

Aqueous solutions (e.g., aqueous periodate and carbonate)
with photolysis can be effective at decomposing PFASs.
With photolysis, aqueous periodate (as NalO,4) produces
products such as 10,7, 105°, *OH, and O* (Cao et al., 2010),
while aqueous carbonate (as NaHCOj3) produces products
such as CO5>™®, HCOs>", and *OH (Phan Thi et al., 2013).
These radicals can react with PFASs and produce shorter-
chain PFASs, F~ ions, CO,, or SO,*".

Under oxidizing conditions, aqueous periodate and car-
bonate can decompose PFOA, with more efficient decom-
position occurring with aqueous periodate (Cao et al., 2010).
This difference may be due to scavenging of aqueous peri-
odate by aquated electrons. While decomposition of PFOA
by aqueous periodate was fast, higher temperatures were used
(40°C). Comparatively, aqueous carbonate decomposed
PFOA to nondetectable levels (82.3% defluorination yield) at
ambient temperatures and basic pH (8.3-8.96), but at a longer
reaction time (12 h) and with the addition of H,O, (Phan Thi
et al., 2013).

Other UV-involved oxidation processes have not been as
successful for PFAS decomposition, including tungstic het-
eropolyacid (H3PW,049-6H,0) (Hori et al., 2004) and al-
kaline 2-propanol (Yamamoto et al., 2007), which required
long reaction times (24 h and 10 days, respectively).
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AOPs: summary

Several AOPs are successful in degrading PFASs, espe-
cially PFOA and PFOS. Electrochemical oxidation of PFASs
may be a possible treatment method, but more research is
needed on other electrode materials and on the influence of
environmental matrices, PFAS mixtures, and cocontami-
nants. Photolysis, photocatalysis, activated persulfate oxi-
dation, and other UV-induced oxidation are also promising
treatment methods, but require similar research as electro-
chemical oxidation.

Advanced reduction processes

ARPs are a new treatment method that has successfully
degraded other xenobiotics, including monochloroacetic acid
(Li et al., 2012a), vinyl chloride (Liu et al., 2013c), and 1,2-
dichloroethane (Yoon et al., 2014). In contrast to AOPs,
ARPs degrade contaminants with highly reactive, nonselec-
tive reducing nucleophiles or radicals, such as aqueous
electrons (also known as hydrated electrons, e,, ), H®, and
SO5°". Current studies (Table 6) on PFAS degradation have
focused on PFCAs and have generated radicals by utilizing
dithionite, sulfite, aqueous iodide, and ferrocyanide in com-
bination with UV, laser flash photolysis, ultrasound, micro-
wave, or electron beam (E-beam).

Hydrated electrons are the main nucleophiles that degrade
PFCAs (E°=-2.9V) (Park et al., 2009). Cleavage of the o-
position C-F bond, instead of the C—C bond, initiates deg-
radation [Eqgs. (S34)—(S37) in Supplementary Table S6] (Qu
et al., 2010; Song et al., 2013). This attack results from the
inductive effect of the carboxyl head group and the ability of
fluorine to withdraw electrons (electron affinity 3.40eV)
(Blondel et al., 1989). In comparison, the carbon atoms
in PFCAs are saturated and cannot gain more electrons.
After cleavage occurs [Eqgs. (S34)—(S37) in Supplementary
Table S6], other free radicals are formed as a result of UV
irradiation or other activation methods, including °C,,_F,,_i,
carbene (:CH,), and *COOH (Qu et al., 2010; Song et al.,
2013). Carbene can then form *CH3, leading to the formation
of CH;COOH (Qu et al., 2010).

ARPs: aqueous iodide (Kl)

KI with UV (254 nm) has been one of the most studied
ARPs and can decompose several PFASs. When UV light is
present, iodide (I") will form a caged complex (I°, €7) in
water [Eqs. (S42) and (S43) in Supplementary Table S6],
which can then dissociate to €,q and iodine atom [Eq. (S44)
in Supplementary Table S6] (Qu et al., 2010). Initial studies
demonstrating the capabilities of KI were limited and re-
sulted in high concentrations of PFCAs and PFSAs remaining
in solution (Park et al., 2009, 2011). This was likely due to
quenching and sequestration of e,q by the production of
triiodide (I37) from high concentrations of KI [Eqgs. (S45)-
(S50) in Supplementary Table S6] (Qu et al., 2010; Park
et al., 2011). Strong greenhouse gases were also produced,
including iodinated hydrocarbons, CHF3, and C,F¢ (IPCC,
2007; Qu et al., 2010).

KI treatment was further improved by utilizing alkaline
conditions and a closed reactor (Qu et al., 2014; Zhang et al.,
2014). Alkaline conditions reduced the amount of green-
house gases produced, and the closed reactor (N, gas)
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prevented the reaction of e, with O,. Regeneration of iodide
was also possible when pH>8.5 [Egs. (S51) and (S52) in
Supplementary Table S6]. Increasing the temperature and
varying ionic strength also improved PFOA decomposition
and defluorination ratios.

ARPs: dithionite and sulfite

Dithionite (S,04>") and sulfite (SO5>7) have been used to
degrade PFOA with relatively limited success. Both dithio-
nite and sulfite will produce €., and other reductants. When
irradiated with UV (315 nm), dithionite will form two sulfur
dioxide radical anions (2S0,°, E°=-0.66 V) (Mayhew,
1978; Makarov, 2001; Vellanki et al., 2013) [Eq. (S53) in
Supplementary Table S6]. Other products can be generated
during this process, including H,SO5;, HSO5™, and 5032_.
Aquated electrons and other reductants, such as H® and sulfite
radical (SO5*7), will form as a result of UV irradiation of
these products and can then be used to breakdown PFOA
[Egs. (S54) and (S55) in Supplementary Table S6] (Fischer
and Warneck, 1996; Lian et al., 2006; Li et al., 2012a).
Generated sulfite radicals can also be used, either as a re-
ductant or oxidant [Egs. (S56)—(S60) in Supplementary
Table S6] (Liu et al., 2013b; Vellanki et al., 2013). While
PFOA degradation seems promising using dithionite and
sulfite, <10% PFOA was removed with UV light and no
degradation was observed when using dithionite and sulfite
with ultrasound, microwave, or E-beam (Vellanki et al.,
2013). Comparatively, Song et al. (2013) observed 68.6%
defluorination of PFOA within 6h (N, gas), but did not
quantitate the PFOA decomposition ratio or metabolite yield.

ARPs: summary

Degradation of PFASs using ARPs needs more research to
determine better degradation parameters for dithionite and
sulfite and to determine other ARPs that can be used. For
example, the ARP, K4Fe(CN)g, in combination with laser
flash photolysis has been studied for trifluoroacetic acid
(TFA), PFBA, and PFOA, but this process has limited ap-
plications and has not been further optimized for PFAS
degradation (Huang et al., 2007). In contrast, KI may be
applied to PFCA-contaminated wastewater. Qu et al. (2010)
observed about 96% PFOA degradation when using KI to
destroy PFCAs in wastewater from a fluorochemical plant in
China.

Thermal and nonthermal destruction

Thermal degradation of PFASs involves breaking the C—C
and C-F bonds with high temperatures to produce per-
fluoroalkyl radicals that will subsequently decompose and
form similar degradation products as photolytic treatment of
PFASs. Thermal treatment methods include thermal chemi-
cal reactions, incineration, sonochemistry, sub- or supercrit-
ical, microwave-hydrothermal, and high-voltage electric
discharge (Tables 7 and 8).

Thermal and nonthermal destruction:
incineration and thermal chemical reactions

Incineration is one of the most common ways to destroy
hazardous compounds and to reduce waste, but can result in
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harmful emissions. Incineration of PFASs, including fluor-
otelomer alcohol (FTOH)-based acrylic polymers, PFOS,
ammonium perfluorooctanoate (APFO), and PFOA, has been
successful at temperatures ranging from 600°C to1,000°C
(USEPA, 2003; Krusic and Roe, 2004; Krusic et al., 2005;
Yamada et al., 2005; Taylor et al., 2014). This may lead to the
formation of 1H-substituted perfluoroalkyl substances, such
as 1-H-perfluoroheptane, which are volatile and mobile
products (Krusic and Roe, 2004; Krusic et al., 2005). Other
harmful emissions, such as dioxins and furans, can be pro-
duced if PFASs are incinerated with other wastes (Tuppur-
ainen et al., 1998; McKay, 2002). Strong greenhouse gases
have been observed from the combustion of PFOS, including
tetrafluoromethane (CF,) and hexafluoroethane (C,Fg) (Ya-
mada et al., 2005). The global-warming potentials are 5,700
and 11,900, respectively (IPCC, 2007), with long atmo-
spheric lifetimes of 50,000 and 10,000 years, respectively
(IPCC, 2013). These harmful by-products may be reduced
with certain additives, such as calcium hydroxide (Wang
et al., 2011a, 2013). More research is needed to fully un-
derstand the effects of incineration on PFASs and by-
products formed.

Other studies have observed PFCA and perfluoroether
carboxylic acid decomposition to shorter-chain carboxylic
acids, F~, and CO, under much more benign, thermal che-
mical methods by combining heat (30—85°C) with persulfate.
Similar reactions took place as with persulfate and UV light
[Egs. (S28)—(S33) in Supplementary Table S6] and resulted
in PFOA decomposition to nondetectable levels, with faster
degradation occurring with increasing temperatures (Lee
et al., 2012b; Liu et al., 2012a). Other PFCAs, perfluoroether
carboxylic acids, and PFNA from floor wax were also ob-
served to degrade to nondetectable levels within 6 h (Hori
et al., 2008a).

Thermal and nonthermal destruction:
sonochemical degradation

Sonochemical degradation of PFASs occurs through the
application of ultrasound to an aqueous medium. When
ultrasound is applied, cavitation bubbles form during
the rarefaction (negative pressure) portion of sound waves
(Thompson and Doraiswamy, 1999; Joseph et al., 2009). The
cavitation bubbles will implode adiabatically, creating ex-
treme temperatures (>9,700°C in the vapor core) and pres-
sures (~ 14,000 psi) within its cavity (Didenko et al., 1999;
Ashokkumar and Grieser, 2005; Ciawi et al., 2006; Ed-
dingsaas and Suslick, 2007; Park et al., 2009). Highly re-
active intermediates and radicals, including hydroxyl
radicals, hydrogen atom, and oxygen atom, form during
cavitation bubble collapse (Leighton, 1994). This combi-
nation of highly reactive species and high temperatures and
pressures has made sonolytic decomposition of PFASs
successful.

PFOS and PFOA were completely mineralized through
sonolysis to CO, CO,, F, and SO42_, as detected by HPLC-
MS, ion chromatography, FT-IR, and GC-MS. Two studies
report no detection of reaction intermediates and complete
defluorination of PFOS within 3h and PFOA within 2h
(Vecitis et al., 2008b, 2010). There was immediate produc-
tion of inorganic sulfur and fluorine atoms, with a slight delay
in production of CO and CO, (Vecitis et al., 2008b).
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Complete mineralization was possible due to the presence of
three different reactivity sites: inside the cavitation bubble, at
the interfacial region between the cavitation bubble and the
bulk aqueous solution, and in the bulk aqueous solution and
vapor phase (Moriwaki et al., 2005; Vecitis et al., 2008b).

The sonolytic decomposition of PFASs depended on the
type of gas used and the initial PFAS concentration. All
sonolytic decomposition processes of PFASs have been
conducted using argon gas since it will produce higher tem-
peratures and increased reaction yields compared with air
(Moriwaki et al., 2005). However, Phan Thi et al. (2014)
observed 100% PFOA decomposition when using nitrogen
gas with NaHCO;. The initial concentration of PFASs is
important as saturation kinetics could influence the reaction.
At higher concentrations of PFOS or PFOA (Table 8), zero-
order kinetics were observed, indicating saturation of ad-
sorption sites on the interfacial region, while at lower con-
centrations, pseudo-first-order kinetics took place (Vecitis
et al., 2008a).

Sonolysis of PFOA and PFOS was affected by coconta-
minants and electrolyte concentrations. Volatile organic
compounds (VOCs) (e.g., methanol, acetone, and methyl
isobutyl ketone) decreased the decomposition rate, likely
caused by competitive adsorption onto the interfacial region
or evaporation of VOCs into the bubble vapor phase, de-
creasing bubble vapor and interfacial temperatures (Cheng
et al., 2008). In contrast, dissolved organic matter did not
significantly impact PFOA and PFOS sonochemical degra-
dation kinetics (Cheng et al., 2008). Electrolyte concentra-
tion could either increase or decrease the sonolytic
degradation rate constant of PFOS and PFOA (Cheng et al.,
2010). For example, the effect of electrolytes on sonochem-
ical rates could be ordered as ClO4; >NO; ~ ClI" 20>
HCO;™ > SO42_ (Cheng et al., 2010), where C10,~, NO5 ™, and
CI" increased decomposition, while HCO;~ and SO42’ de-
creased decomposition. The electrolyte probably influenced
interfacial conditions by either increasing the number of
surface sites available or by altering heat transfer from the
bubble vapor to the bulk liquid. In addition to PFOA and
PFOS, shorter-chain PFASs, including PFHxA, PFHXxS,
PFBA, and PFBS, can be degraded by sonolysis with pseudo-
first-order kinetics (Campbell et al., 2009).

Sonolysis of PFASs may be improved in conjunction with
other treatment methods, such as ozone, microwave irradia-
tion, persulfate, and VUV (Yang et al., 2013). When sono-
lysis and ozone were applied to groundwater containing
PFOS and PFOA, the degradation rates increased by 79% for
PFOS and 70% for PFOA when compared with Milli-Q water
(Cheng et al., 2008). Similarly, microwave irradiation com-
bined with an ultrasonic homogenizer decomposed PFOA
within only 90s with 59% defluorination yields (Horikoshi
et al., 2011). Temperatures reached 1,000°C at the tungsten
tip and 51°C in the bulk liquid. Active species were also
generated, including hydroxyl radical, hydrogen atom, and
oxygen atom, causing decarboxylation and oxidation of
PFOA and its intermediates. Comparatively, a more benign
treatment approach can be used with persulfate and sonolysis
under either air or argon gas and has been used to degrade five
perfluoroether carboxylic acids and two perfluoroether sul-
fonates (Hori ef al., 2012). Argon gas increased removal
yields compared with air due to the occurrence of higher
temperatures when the cavitation bubbles collapsed.
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Thermal and nonthermal destruction:
sub- or supercritical treatment

Treatment methods using sub- or supercritical water can be
environmentally benign. Subcritical water temperatures
range from 100°C to 350°C and are maintained at a certain
pressure to hold a liquid state. In comparison, supercritical
water temperatures reach >350°C and pressures >22.1 MPa
(Jessop and Leitner, 1999). At these temperatures and pres-
sures, sub- and supercritical water has useful properties for
degrading hazardous compounds, including high diffusivity
and low viscosity.

Iron has been used in combination with sub- or supercrit-
ical water to increase decomposition of PFASs. Compared
with aluminum, copper, and zinc (Hori et al., 2006), iron
increased decomposition of PFOS (Hori et al., 2006) and
Nafion NRE-212, a perfluorinated ion-exchange membrane
(Hori et al., 2010), in an argon-saturated aqueous subcritical
solution. The PFOS degradation efficiency of each metal
could be ordered as Al <Cu<Zn<<Fe, while the redox po-
tential of each metal could be ordered as Cu<Fe<Zn< Al,
suggesting that the metal surface plays a more important role
than redox potential (Hori et al., 2006). Increasing the surface
area and using zero-valent iron also improves decomposition
of PFASs (Hori et al., 2008b, 2013b, 2015).

Compared with subcritical water, PFAS degradation was
enhanced under supercritical conditions. Hori et al. (2008b)
observed increased consumption of PFHxS under supercrit-
ical conditions (94.8% PFHxA decomposed) compared with
subcritical conditions (83.6% PFHxS decomposed) when Fe
powder was added. However, under supercritical conditions,
more CF;H was produced, a greenhouse gas with a global
warming potential of 14,800 for a 100-year horizon and an
atmospheric lifetime of 270 years (IPCC, 2007).

Thermal and nonthermal destruction:
microwave-hydrothermal treatment

Microwave-hydrothermal treatment is more cost-efficient
when compared with other thermal treatment processes and
can save up to 50% in energy consumption. Higher decom-
position rates, enhanced kinetics, and rapid and homoge-
neous heating have also been observed (Park et al., 2000;
Jones et al., 2002).

Persulfate has been used in combination with microwave-
hydrothermal treatment to decompose PFOA and will form
sulfate radicals with heat, similar to persulfate and UV light,
as shown in Equations (S28)-(S33) in Supplementary
Table S6 (Lee et al., 2009). At 90°C, PFOA was decomposed
to nondetectable levels after 6 h, and at 60°C, the reaction
took twice as long to achieve the same PFOA removal (Lee
et al., 2009). Although microwave-hydrothermal treatment
with persulfate is quick, it requires low pH, as found in cer-
tain industrial wastewaters (e.g., chromium plating), to form
more sulfate radicals, as seen in Equations (S61) and (S62) in
Supplementary Table S6 (Lee et al., 2012a). In addition, the
pH will drop quickly as the reaction proceeds from pH 3.6 to
2.3in 1 h and less than 0.1 U every hour afterward due to the
formation of more protons.

Persulfate activated by microwave-hydrothermal treat-
ment was improved with the addition of zero-valent iron
(ZV1) powder and inhibited by the addition of chloride ions.
ZVI acted as a source of ferrous ions and led to faster
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activation of persulfate [Eq. (S63) in Supplementary
Table S6]. Within 1h at 90°C, about 60% PFOA was de-
graded (~15% fluoride yield) (Lee et al., 2010). While
PFOA degradation efficiency increased with ZVI, high con-
centrations of ZVI (14.4-18 mM) resulted in less PFOA
degradation due to the release of ferrous ions that competed
with PFOA for sulfate radicals. Chloride ions were also ob-
served to inhibit PFOA degradation rate (Lee et al., 2012b).

Thermal and nonthermal destruction:
high-voltage electric discharge

High-voltage electric discharge reactors apply electric
discharges directly in water (electrohydraulic discharge) or
above water (nonthermal plasma, NTP) and have been uti-
lized for inactivation of microorganisms and removal of or-
ganic substances, such as phenols, chlorinated solvents, and
organic dyes (Locke et al., 2006). These electric discharges
will generate strong electric fields and highly active species,
such as hydroxyl radicals, ozone, oxygen radicals, and hy-
drogen radicals. Shock waves and UV light may also occur as
a result of electric discharge application. During electrohy-
draulic discharge, liquid—gas phase reactions with reactive
species and other organic compounds can occur as bubbles
form in the electric field. NTP has also been shown to gen-
erate electrons that have temperatures >9,700°C and can
activate highly reactive species (Holzer et al., 2002; Roland
et al., 2002; Oda, 2003; Locke et al., 2006). High-voltage
electric discharge can be cost-efficient, depending on the
reaction time and energy utilization [e.g., decomposition
energy yield of 16 g/kWh or 1 W power (Magureanu et al.,
2010)].

A DC electrohydraulic plasma discharge reactor was uti-
lized for PFOA and PFOS decomposition (Yasuoka et al.,
2010, 2011; Matsuya et al., 2014; Takeuchi et al., 2014,
Hayashi et al., 2015). DC plasmas were generated within
oxygen gas bubbles and reached temperatures ~ 2,000 K.
PFOA and PFOS molecules adsorb onto the gas—liquid in-
terface in high concentration (Matsuya et al., 2014), where
generated positive species (M") collided and reacted with
anionic forms of PFOA or PFOS. The reaction can cause
decarboxylation degradation pathways [Egs. (S64)—(S66) in
Supplementary Table S6] or C—C bond cleavage [Eqs. (S67)—
(S69) in Supplementary Table S6]. C—C bond cleavage is
likely since the gaseous fluorocarbons, CF,, (m=1-3), were
detected (Takeuchi et al., 2014). Other gaseous fluorocarbons
detected during only the first 10 min of the reaction include
CHF;, C,Fg, and C,HFs. Shorter-chain perfluorocarboxy-
lates, especially TFA [Eq. (S68) in Supplementary Table S6]
and PFHxXA [Eq. (S69) in Supplementary Table S6], fluoride
ions, or sulfate ions, were also observed. Recently, Hayashi
et al. (2015) demonstrated the successful use of a two-parallel
operation of a DC electrohydraulic plasma discharge reac-
tor for large-scale treatment of PFOS [Egs. (S70)—(S73) in
Supplementary Table S6].

The NTP method, Glidarc, was shown to decompose a
perfluorinated nonionic surfactant known as Forafac 110
(CgF13—C,H4(OC,Hy) 1 sOH) (Marouf-Khelifa et al., 2008).
Within 6 h, 96.7% Forafac was removed, and more efficient
reaction time (within 1 h) was observed when adding anatase
or rutile TiO,. Glidarc involves the production of an electric
arc between two electrodes in a gaseous medium (Marouf-
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Khelifa et al., 2006). When the glidarc is exposed to humid
air plasma, NO® and OH® are formed. The NO® leads to the
formation of NO,, NO,~, and NO5~ [Egs. (S74)—(S579) in
Supplementary Table S6] (Marouf-Khelifa er al., 2006). The
OH® makes the glidarc a strong oxidizer, while NO species
acidifies the reaction. Other species, such as H,O, and O3, are
also produced to improve decomposition (Marouf-Khelifa
et al., 2008).

Thermal and nonthermal destruction: summary

Studies using thermal and nonthermal processes for PFAS
destruction have been successful with some limitations, in-
cluding production of toxic by-products and greenhouse ga-
ses. These methods are also relatively more expensive than
AOQPs and sorption removal processes. For example, to treat
phenol-contaminated wastewater at a 1,000 L/min capacity
treatment plant, sonolysis would cost $15,537 per 1,000
gallons of treated water. When combined with other treat-
ment processes, such as ozone or UV, this cost can be low-
ered to $25.80. In comparison, treating the same wastewater
would cost $7-11 per 1,000 gallons of treated water with a
commercial process known as Perox-pure™ (Calgon Carbon
Oxidation Technologies) (Mahamuni and Adewuyi, 2010).
The cost efficiency of other methods for PFAS removal is still
unknown, especially when dealing with PFAS mixture and
cocontaminants.

Microbial treatment processes

Microbial degradation of PFASs has only been observed
to occur with polyfluoroalkyl substances (Butt et al., 2014),
which contain some C—H bonds instead of C—F bonds (Buck
et al., 2011). Although reductive defluorination of per-
fluoroalkyl substances may be possible, as observed when
using vitamin B12 and Ti(III)-citrate (Ochoa-Herrera et al.,
2008), there are no known reports of biotransformation
occurring. Vitamin B12 is needed in microbial reductive
dehalogenation processes and it can be used in vitro when
Ti(II) is supplied as the reducing agent.

Butt et al. (2014) published a comprehensive review on
the biotransformation pathways (microbial, mammalian,
and fish) of fluorotelomer-based compounds. Many poly-
fluoroalkyl substances, such as 6:2 FTOH, are transformed
to perfluoroalkyl substances, such as PFHxA, PFPeA, and
PFBA, by pure bacterial cultures and environmental sam-
ples. Perfluoroalkyl metabolite production has been ob-
served in other studies published after Butt et al. (2014),
including WWTP effluent (Guerra et al., 2014), AFFF-
amended microcosms (Harding-Marjanovic et al., 2015),
and soil-plant microcosms with WWTP biosolids (Rankin
et al., 2014). Comparatively, the wood-rotting fungi, Pha-
nerochaete chrysosporium, transformed 6:2 FTOH toward
polyfluoroalkyl substances, including 5:3 polyfluorinated
acid (5:3 acid) and 5:3 acid conjugates within 28 days
(Tseng et al., 2014). While many studies demonstrated
perfluoroalkyl metabolite production, this may not occur
under all environmental conditions, such as anaerobic bio-
reactors (Alder and van der Voet, 2015). More research on
the microbial degradation of PFASs must be conducted to
fully understand the biotransformation of PFASs in the
environment.
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Other treatment processes

Several other studies have used different treatment meth-
ods to degrade PFASs, including ozonation under alkaline
conditions, permanganate, and ball milling. Ozonation is a
commonly used AOP in at least one-third of water treatment
plants in the United States (Crittenden et al., 2012). Ozona-
tion of PFOA and PFOS was viable within 4h when pre-
treating with O3 at pH 4-5, followed by pH adjustment to 11,
but environmental matrices containing humic acid may in-
hibit ozonation (Lin et al., 2012a). Permanganate is also
widely used as an oxidizing agent for iron and manganese,
taste and odor control, microorganism control, and degra-
dation of other hazardous pollutants (Crittenden et al., 2012;
Liu et al., 2012b). Permanganate removed about 50% PFOS,
but with only 5% fluoride yield at 65°C and pH 4.2 (Liu et al.,
2012b). Although complete PFOS decomposition could not
be achieved, degradation efficiency of permanganate im-
proved with increasing temperatures and was not inhibited by
the addition of organic acids, including oxalic, tartaric, suc-
cinic, citric, and humic acid.

In contrast to ozone and permanganate, ball milling is a
type of mechanochemical (MC) destruction method that has
been used to destroy PFOS and PFOA (Zhang et al., 2013b).
Reactions take place at the surface of the ball mills while
mechanic force is applied, such as shaking. This process ef-
fectively destroyed PFOS (<0.2% PFOS remained with
92.3% fluoride yield) after 6 h of ball milling. When potas-
sium hydroxide (KOH) was added, PFOS and PFOA were
completely destroyed with higher fluoride yields.

Conclusion

A wide variety of technologies to remove or destroy PFASs
have been tested by researchers and practitioners. Results
show that a variety of PFASs can effectively be removed from
water and wastewater using sorption onto AC, ion exchange,
MIPs, and other sorbents. Knowledge of PFAS sorption
mechanisms has been used to design more efficient sorbents
and to predict their performance under a range of environ-
mental conditions. Technologies for destroying PFASs include
a variety of AOPs, ARPs, thermal and nonthermal destruction
methods, and other innovative approaches (e.g., ball milling).
These technologies effectively destroyed select PFASs under
idealized laboratory conditions. However, many studies dis-
cussed in this review may not have achieved detection limits
below provisional guidelines set by EPA (ng/L) (USEPA,
2016). While analytical methods to measure PFASs have be-
come more sensitive within the past decade and can attain
detection limits of ng/L (Naile et al., 2010; Cao et al., 2011,
Wang et al., 2011b; ASTM, 2015), most PFAS removal
methods have not been retested using new analytical tech-
niques. Further research is needed on promising PFAS re-
moval methods that attained nondetectable PFAS levels for the
development of applicable remediation strategies.

Despite these advances, more work is required to develop a
design basis for confidently employing PFAS remediation
strategies. Several technologies (e.g., ARPs) require addi-
tional basic research to elucidate reaction mechanisms, de-
termine degradation parameters, decomposition products,
and defluorination yields. Destruction technologies can likely
be improved for field implementation (e.g., lower reagent
doses, temperatures, pressures, energy consumption). Com-
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prehensive research studies are needed to predict and address
the effects of complex field conditions on treatment tech-
nology performance. Field conditions are typically affected
by the presence and distribution of PFAS mixtures, co-
contaminants (e.g., chlorinated solvents, metals, and 1,4-
dioxane), and environmental matrix parameters (e.g., tem-
perature, pH, organic matter content, inorganic ions, oxygen
concentrations, groundwater, sediment geochemistry). Due
to the complexity of PFAS mixtures in the environment,
comprehensive studies may not be possible until accurate and
efficient analytical methods for PFAS precursors and me-
tabolites are developed and standardized.

Application of promising treatment technologies at waste-
water and industrial treatment plants and at pilot-scale or full-
scale remediation systems also merits further research. Such
studies need to take into account the effect of natural envi-
ronmental conditions on PFAS transformation and distribution.
PFAS fate and transport can also be affected by remediation
systems designed and previously implemented for coconta-
minants. Currently, two field studies have observed the likely
transformation of PFAS precursors to terminal PFAS products,
such as PFOA and PFOS, at former firefighting training bases,
where several remediation methods have been utilized to re-
move other contaminants (McGuire et al., 2014; Anderson
et al., 2016). A bench-scale study observed no transformation
of PFA As using ISCO with activated persulfate, permanganate,
or catalyzed hydrogen peroxide (McKenzie et al., 2015) and
demonstrated that ISCO remediation efforts for other con-
taminants can affect PFAS fate and transport. Furthermore,
certain ISCO treatments may be used for PFAS containment
(persulfate) or for pump-and-treat efforts (permanganate and
catalyzed hydrogen peroxide). More field studies and PFAS
monitoring must be conducted to fully understand the removal,
fate, and transport of these compounds.

Another direction for further research is the effective use
of PFAS treatment technologies in treatment trains. Due to
the stable nature of these compounds, treatment processes
will likely need to be combined to achieve cost-efficient re-
moval. For example, photocatalysis could be combined with
membrane separation processes, sonolysis, or biological
treatment. Unfortunately, current studies have been limited to
understanding the removal efficiencies of one technology
under fairly simplistic conditions. Ideally, the assortment of
research avenues will eventually provide different treatment
methods to cost-effectively remove PFASs under various
circumstances and field conditions.
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