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Abstract
The presence of certain toxic pollutants in water and wastewater such as chlorophenol must be eliminated, as they have 
negative effects on human health and the environment. Based on the state of the art, the reverse osmosis (RO) coupled with 
photovoltaic (PV) was chosen for wastewater treatment. The aim of this article is to evaluate the optimal operating conditions 
of RO-PV system that maximize chlorophenol rejection with minimal energy consumption. Two complementary approaches 
were followed combining physical models with statistical ones. The physical model used for the simulation is based on the 
equations of diffusion and matter balance. After demonstrating the reliability of this model, it was used for parametric sen-
sitivity analysis, performing numerical experiments using a program developed under Python. The data obtained were used 
for operating parameters optimization, using artificial neural network method coupled with the desirability function. The 
results showed that the optimal values obtained, relating to feed pressure of 9.713 atm, water recovery rate of 40%, operat-
ing flow rate of  10−4  m3/s and temperature of 40 °C could remove 91% of chlorophenol with an energy consumption of 0.8 
kWh/m3. This consumption allowed us to deduce that photovoltaic solar panel with a peak power of 280 Wp and a battery 
capacity of 9.22 kWh is sufficient to produce 1 m3/day.

Keywords Wastewater · Reverse osmosis · Photovoltaic · Operating parameter · Sensitivity analysis · Artificial neural 
network

List of symbols
A  Effective area of the membrane  (m2)
Aw  Solvent transport coefficient (m/atm s)
b  Feed and permeate channels friction parameter 

(atm s/m4)
Bs  Solute transport coefficient (m/s)
Cf  The feed concentration (kmol/m3)
Cm  The solute concentration on the membrane sur-

face (kmol/m3)
Cp  The permeate concentration (kmol/m3)
Cr  The retentate concentration (kmol/m3)
Eeld  The daily electricity energy requirement (kWh/d)
Esm  The monthly average daily solar irradiation of 

the worst month (kWh/m2/d)
Esp  The specific energy required by the high-pres-

sure pump (kWh/m3)

Js  The solute flux through the membrane (kmol/m2 
s)

Jw  The permeate flux (m/s)
k  The mass transfer coefficient (m/s)
L  The length of the membrane (m)
Ps  The feed pressure (atm)
Ppeak  The peak power of the photovoltaic 

collectors (kWp)
Pp  The permeate pressure (atm)
Pr  The retentate pressure (atm)
Qb  The energy capacity of the batteries (kWh)
Qf  The feed flow rate  (m3/s)
Qp  The permeate flow rate  (m3/s)
Qr  The retentate flow rate  (m3/s)
R  The gas low constant ( = 0.082 atm.m3/K kmol)
Rej  The chlorophenol rejection (dimensionless)
RI  The relative importance of each variable 

(dimensionless)
Si  The sum of the contributions of input neurons 

(dimensionless)
T  Temperature (°C)
W  The membrane width (m)
Y  The water recovery rate (dimensionless)
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∆P  The difference in pressures across the membrane 
(atm)

∆π  The osmotic pressure difference across the mem-
brane (atm)

θ  Parameter in Eq. 6
η  Pump efficiency (dimensionless)

Abbreviations
ANN  Artificial neural network
BR  Bayesian regulation
COD  Chemical oxygen demand
CSP  Concentrated solar power
GHG  Greenhouse gas
LM  Levenberg–Marquardt
MSE  Mean-squared error
MAE  The mean absolute error
MF  Microfiltration
NF  Nanofiltration
PV  Photovoltaic
RMSE  The root mean squared error
RO  Reverse osmosis
SCG  Scaled conjugate gradient
DC  Direct current
AC  Alternating current
CCD  Central composite design
SWRO  Sea water reverse osmosis

Introduction

Water is a vital element for human regardless of its gaseous, 
liquid or solid-state. It is useful for economic and social 
development, as well as our environmental sustainability. 
Around the world, water needs are growing more and more 
(Fiorenza et al. 2003). Many people do not have access to 
drinking water, especially in dry areas. It is becoming a 
fundamental ecological concern due to water scarcity. This 
shortage derives from global warming, population growth 
and groundwater pollution from industrial effluents or agri-
cultural treatment. There is no fresh water supply available 
in sufficient quality and quantity to permit excessive use. 
This growing shortage and the desalination of seawater or 
brackish water remains an alternative to drinking water. 
Wastewater treatment is also an economical solution that 
can be used in the agricultural and industrial sectors. The 
latter option was put in place by the Moroccan government 
in order to minimize water consumption, particularly in 
the agricultural sector, thus using 40% of treated wastewa-
ter in agriculture and reducing 60% of pollution by 2020 
(National Council of the Environment 2007). Additionally, 
the use of wastewater is considered as an additional resource 
that contributes to the protection of our environment, but 
this wastewater must be treated before its use, as it contains 

polluting substances which have negative effects on human 
health and the environment (Ayoub et al. 2016; El Brahmi 
and Abderafi 2020). Depending on the nature of the process, 
the composition of industrial wastewater may vary from one 
process to another, but it usually contains large amounts of 
dissolved organic matter such as benzene, toluene, ethylben-
zene, xylenes, phenols and organic acids. Suspended organic 
mattes such as oils and greases; dissolved inorganic materi-
als such as heavy metals, sulfates, nitrites and nitrates; and 
dissolved salts such as chlorides and bromides (MDDEFP 
2012; Shi and Qian 2000). In water, chlorine forms toxic 
chlorophenols with phenol (Bliefert and Perraud 2001). 
These toxic pollutants must be removed by wastewater treat-
ment (Kusic et al. 2011; España-Gamboa et al. 2012). This 
treatment must make it possible to extract water of quality 
corresponding to the different uses.

A wide variety of treatment research is available for 
wastewater treatment. There are studies that have demon-
strated the performance of the microfiltration (MF) process 
for the treatment of wastewater rich in oils and greases 
by testing synthetic water or wastewater (Kumar and Pal 
2015; Abadikhah et al. 2018). The nanofiltration (NF) pro-
cess has been tested and recommended for an oil–water 
emulsion and for micro-pollutants (Muppalla et al. 2015). 
The same mixture was pretreated by electrocoagulation 
and followed by reverse osmosis (Silva et al. 2015). This 
process has proven reliable for removing chemical oxygen 
demand (COD), total dissolved solids turbidity, electro-
lytic conductivity and aluminum ions. Hafez et al. (2007) 
use NF followed by RO membrane separation technology 
for the treatment of synthetic solutions. They found that 
the NF membrane removes about 30% of the divalent and 
trivalent ions, while the RO membrane allows the separa-
tion of 99% of sulfate ions, 96% iron, 93% bicarbonate, 
90% sodium ions, magnesium and sulfide, 86% potassium, 
73% phosphate and 25% calcium ions. Recently, the RO 
process has been used for a wastewater treatment plant 
and has eliminated various contaminants such as caffeine, 
theobromine, theophylline, amoxicillin and penicillin G 
(Lopera et al. 2019). Different studies have shown the 
use of the RO for the separation of chlorophenol from 
wastewater (Al-Obaidi and Mujtaba 2016; Al-Obaidi et al. 
2018a, b). Furthermore, this technology has been shown 
to be very promising for the removal of other hazardous 
industrial effluents, such as N-nitrosamine compounds 
and especially N-nitrosodimethylamine (Al-Obaidi et al. 
2018a, b). These various researches revealed to us that the 
reverse osmosis is being developed for the treatment of 
different types of wastewater and can be used to eliminate 
almost all contaminants and pollutants. In addition to its 
operational flexibility, the RO involves lower capital cost 
and overall cost compared to thermal processes (Nisana 
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and Benzartib 2008). During the last 10 years, the cost of 
membranes has been reduced by almost half.

For its operation, the reverse osmosis process requires 
electrical energy consumption to operate the high-pressure 
pumps circulation and others. This consumption is estimated 
with an average of 4 kWh/m3 (Nisana and Benzartib 2008) 
and can reach 19 kWh/m3 for large industrial units (Abdelka-
reem et al. 2018). The cost of this energy could represent 
up to 50% of the final costs of the water-based product 
(Peñate and García-Rodríguez 2011). Despite the progress 
achieved in reducing energy consumption, it remains high, 
which is the main reason for the limited spread of technol-
ogy (Fiorenza et al. 2003). The use of renewable energy is 
essential to improve the quantity and quality of products and 
reduce greenhouse gas (GHG) emissions (Mekhilef et al. 
2011). Fossil resources are not a sustainable option for the 
future and contribute to environmental pollution (Nisana and 
Benzartib 2008). Renewable energy systems offer alterna-
tive solutions to reduce dependence on fossil fuels. These 
sources of natural energy are becoming increasingly impor-
tant for the production of electricity. Among the sources of 
renewable energy production, solar energy transforms radia-
tion into electricity (photovoltaic) or converts it into heat 
(CSP) and wind energy that transforms the kinetic energy 
of the wind into mechanical energy. Choosing sustainable 
and viable energy for reverse osmosis wastewater treat-
ment is a crucial and profound issue to study. According 
to Fiorenza et al. (2003), the most promising combination 
with desalination processes is solar and more precisely solar 
photovoltaic (PV) technology. A comparison between dif-
ferent technologies of desalination showed that despite the 
low energy requirements and the high water recovery rate 
of PV-coupled RO, the cost of producing water is high (Ali 
et al. 2011). Small capacity desalination units coupled with 
solar or wind power, for isolated sites, have proven to be less 
expensive than conventional techniques (Charcosset 2009).

In this research, attention is devoted to develop a sepa-
ration process that will allow the treatment of wastewater 
and maximize the rejection of chlorophenol, with minimal 
energy consumption. However, a separation technology 
coupled with renewable energy will be used. Parametric 
sensitivity study will be followed to test five operating 
parameters effect of the RO-PV system. The data neces-
sary to follow this methodology will be obtained numeri-
cally using an appropriate mathematical model based on 
the phenomena involved in the process. The artificial neu-
ral network method will be followed to assess the impor-
tance of the parameters on the model prediction and the 
determination of their optimal values.

Reverse osmosis‑photovoltaic system 
description

The reverse osmosis-photovoltaic (RO-PV) combination 
remains the most appropriate choice to develop for the treat-
ment of wastewater. Due to the mastery of the two technolo-
gies involved, RO-PV is probably the most common and the 
most reliable system in highly sunny countries. In southern 
Mediterranean countries such as Morocco, the number of 
days of sunshine is high and different sites have a consider-
able solar field; more than 3000 h/year of sunshine with an 
irradiation of about 5 kWh/m2/day (Ben Fares and Abderafi 
2018). Solar energy can therefore be considered as the most 
important source of renewable energy in the country. Moreo-
ver, electricity generated by renewable energy has increased 
fivefold over the last decade and solar energy is the most 
economical choice compared to geothermal wind and ocean 
energy (Abdelkareem et al. 2018).

The process studied in this work is shown in Fig. 1. The 
RO unit is equipped with a tubular module containing a 
spiral wound polyamide thin-film composite membrane, 
then a high-pressure pump. Among the various membranes 
that filter the undesirable elements present in the water, one 
distinguishes the TFC polyamide membrane which has a 
good selectivity with a high rejection of solute and a good 
chemical, thermal and mechanical stability. It can be used 
for higher temperatures up to 45 °C without the risk of deg-
radation and for pH ranges between 3 and 10 (Wang and 
Wang 2019).

The single-stage spiral wound configuration can be cho-
sen because it is commonly utilized in seawater desalina-
tion and is characterized by its ease of use, in addition to 
its energy savings compared to two-pass RO configurations 
(Kim and Hong 2018). In a reverse osmosis unit, water is 
pumped at high pressure to the surface of the membrane 
causing an opposite hydrodynamic pressure greater than the 
osmotic pressure. The water flow rate is reversed from the 
concentrated side to the diluted side. Thus, the water is fil-
tered by its passage through a semi-permeable membrane of 
extreme finesse from which are separated two solutions of 
different concentrations. The retentate is rich in concentrated 
brine and the permeate composed of almost pure water. The 
reverse osmosis unit is capable of rejecting almost all the 
colloidal or dissolved materials of an aqueous solution. 
Table 1 gives details specifications of the membrane module 
(Sundaramoorthy et al. 2011).

The energy necessary for the operation of the process is 
provided by the PV technology. The PV components used in 
the design and construction of this study are the polycrystal-
line PV modules; this choice was justified by the compari-
son made by Elibol et al. (2017) who studied the efficiency 
and performance of three types of photovoltaic solar panels. 



 Applied Water Science          (2020) 10:217 

1 3

  217  Page 4 of 14

They noted that a 1 °C increase in ambient air tempera-
ture increased the efficiency of amorphous crystalline and 
polycrystalline panels by 0.029% and 0.033%, respectively, 
and reduced the productivity of monocrystalline panels by 
0.084%. The photovoltaic cell consists of a semiconductor 
a basic material which is generally silicon. This material 
allows it to function as an insulator and conductor. Silicon 
is the most widely used material and accounts for about 90% 
of the market (Andreani et al. 2019) while cells using cad-
muim, tellurium and indium copper diselenide (Galium) are 
also available but under development.

In this technology, energy is converted into electricity 
by the transfer of electrons using photovoltaic panels. To 
connect the PV to the power grid, other components such as 
batteries, wiring, controllers and converters are needed. The 
batteries are used for power stability and as an energy source 
for lighting at night or during periods when solar energy is 
not sufficient to drive the RO unit. The most used type of 
batteries for a solar system are lead-acid. It is cheaper and 
used for small installations with a very short service life of 

3 to 5 years and a limited number of cycles between 300 and 
500 with a depth of discharge of 80% (Freitas Gomes et al. 
2020). However, it is more interesting to choose, the lithium-
ion type which is more expensive, but guarantees increased 
durability and efficiency with a depth of discharge up to 
80%, of their total capacity and a large number of cycles 
varying between 2000 and 5000 according to certain manu-
facturers (Boucar and Ramchandra 2015). The charge regu-
lators are used to protect batteries from overcharging. The 
direct current (DC) obtained at the output of the battery is 
converted into alternating current load (AC) by the inverter.

RO‑PV system modeling and validation

In this section, the model used to test the effect of operating 
parameters on process coupling RO with PV, for wastewater 
treatment, is presented. The different equations needed for 
this model are described below. RO model is based on diffu-
sion and material balance equations. The solution–diffusion 
model is used to describe the permeation process in which 
all the solute and solvent molecular species dissolve through 
the membrane materials and then diffuse inside under the 
action of a concentration and pressure gradient. The separa-
tion occurs when the flux of water is different from the flux 
of solutes. The flux of solvent and solute through the mem-
brane is given by (Wang and Wang 2019):

where Aw(m/atm s), Bs (m/s), ∆P(x) (atm) and ∆π(x) (atm) 
are the solvent transport coefficient, the solute transport 
coefficient, the difference in pressures across the membrane 
and the osmotic pressure difference across the membrane at 

(1)Jw(x) = Aw(ΔP(x) − Δ�(x))

(2)Js(x) = Bs

(
Cm(x) − Cp

)
= JW(x)Cp

Fig. 1  Simplified schematic of 
the RO-PV system

Table 1  The details specifications of ion exchange, India membrane 
module

Parameter Value

Number of turns 30
Permeate channel thickness tp (mm) 0.5
Feed spacer thickness tf (mm) 0.8
Module diameter (m) 0.0825
Module length L (m) 0.934
Module width W (m) 8.4
b ( atm s/m

4) 8529.45
Aw (m/atm.s) 9.5188 × 10−7

Bs (m/s) 8.468 × 10−8

Permeate pressure (atm) 1
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any point on the x axis, respectively; Cp (kmol/m3) and Cm 
(kmol/m3) are the permeate concentration and solute con-
centration at the membrane surface, respectively.

The difference in osmotic pressure across the membrane 
is given by the following relation:

where R ((atm m3)/(K kmol)) the perfect gas constant and T 
(K) the temperature.

The transmembrane pressure is calculated by using the 
following formula:

where the retentate pressure is obtained by (Sundaramoorthy 
et al. 2011):

with:

where L (m), module length and W (m), the width of the 
membrane.

By combining the three Eqs. (1), (2) and (3), the flux of 
solvent is obtained:

To determine the concentration of the two outputs, a 
mass balance is used. The water recovery rate, the rejec-
tion rate, input flow and concentration are necessary to 
solve the equations of flow rate, permeate and retentate 
concentrations. The total mass balance and partial balance 
in both channels can be written as follows:

where Qf, Qp and Qr are the feed flow rate, permeate flow 
rate and retentate flow rate, respectively; Cf, Cp and Cr 
(kmol/m3) are the feed, permeate and retentate concentra-
tions, respectively.

The water recovery rate is defined by the following 
relation:

(3)Δ�(x) = RT

(
Jx(x)

Bs

)

(4)ΔP = Pr − Pp

(5)Pr = Pf −
bL

� sinh �

[
Qf(2 − Y)(cosh � − 1)

]

(6)� = L

√√√√
√

WbAw(
1 + Aw

(
R

Bs

)
TCp

)

(7)Jw(x) =
AwBsΔP(x)

Bs + RTAwCp

(8)Qf = Qp + Qr

(9)QfCf = QpCp + QrCr

(10)Y =
Qp

Qf

The two Eqs. (9) and (10) are used to calculate the con-
centration of the retentate along the x-axis:

where Cp is the permeate concentration

From these two parameters, the observed rejection rate 
can be commonly deduced by the following equation:

with Cp (0) and Cp (L) are the permeate concentrations of 
the inlet and outlet, given by:

The mass transfer coefficient (m/s) is calculated by using 
the dimensionless number such as Reynolds and Schmidt 
(Murzin and Salmi 2005). After some mathematical manipu-
lation and by choosing the Schmidt correlation established 
by (Sundaramoorthy et al. 2011), this coefficient is calcu-
lated from:

The diffusion (Di), viscosity (μi) and density (ρi) coef-
ficients relative to the feed and permeate, necessary for the 
calculation, are given by Koroneos et al. (2007):

The electrical consumption of the necessary RO unit that 
can be used to remove chlorophenol from wastewater and pro-
duce this quantity of treated water (Qprod) can be calculated by 
the following relation:

(11)Cr =

(
Cf − YCp

)

(1 − Y)

(12)Cp =
Cp(0) + Cp(L)

2

(13)Rej = 1 −
Cp

Cr

(14)Cp(0) =
BsCfe

Jw(0)

k(0)

Jw(0) + Bse
Jw(0)

k(0)

Cp(L) =
BsCre

Jw(L)

k(L)

Jw(L) + Bse
Jw(L)

k(L)

(15)

ki =
147.4Di

de

(
�pdepJW

�p

)0.739(
�fdefQf

�fWtf

)0.13(
Cf

�m

)0.135

(16)
Di = 6.725 × 10−6 exp

{
0.154E − 3

(
Ci × 18.0153

)
−

2513

T + 273.15

}

(17)
�i = 1.234 × 10−6 exp

{
0.0212

(
Ci × 18.0153

)
+

1965

T + 273.15

}

(18)

�i = 498.4mi +

√[
248400m2

i
+
(
752.4miCi × 18.0153

)]

mi = 1.0069 −
(
2.757 × 10−4

)
T

(19)Eeld = Qprod × Esp
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The specific energy Esp is given by (Al-Obaidi et al. 2018a, 
b):

where: Pf, feed pressure (bar), Y, water recovery rate and η, 
pump efficiency.

The peak power of the PV collectors is calculated according 
to the daily electricity energy requirement, Eeld (kWh/day) and 
the monthly average daily solar irradiation of the worst month 
Esm (kWh/m2/day) (Labouret and Villoz 2008):

(20)Esp =
Pf

Y� × 36

(21)Ppeak =
Eeld

KvEsm

where Kv = 0.7 is the conversion factor applied to take into 
account the different losses (converter, batteries, pressure 
drops,…)

The energy capacity of the batteries, Qb, is calculated 
according to the daily electrical energy requirements Eeld , 
the number of days of storage desired, Nd , and a factor Kb 
that takes into account the different losses (estimated at 
Kb = 0.7) (Labouret and Villoz 2008):

The model described above was used to calculate the 
chlorophenol rejection and the specific energy consump-
tion of the RO unit. The calculation was carried out using 
a program developed under the software Python, following 
the same procedure of Sundaramoorthy et al. (2011), who 
developed their computer program in MATLAB language. 

(22)Qb =
NdEeld

Kb

Fig. 2  Flowchart of the basic 
algorithm for a single-stage 
reverse osmosis unit (Sundara-
moorthy et al. 2011)
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Noted that the code relating to this algorithm is not avail-
able in the literature and it is for this reason that we have 
resumed the validation of the model, in this work. Figure 2  
shows the flowchart of the developed program that presents 
the basic algorithm for a single-stage reverse osmosis unit. 
The equations describing the separation of water and chlo-
rophenol through a RO membrane were solved iteratively for 
feed rate, pressure, solute concentration, temperature and a 
given water recovery rate. The calculation was initialized 
with a permeate concentration value equal to half that of the 
feed. The iterative calculation is started in the case where 
the constraint is not satisfied; the concentration of permeate 
receives a new value and continues until the required speci-
fication is satisfied.

The operating conditions used for model validation 
correspond to the experiments which were carried out by 
Sundaramoorthy et al. (2011). These experiments were car-
ried out with three feed flow rates (0.0002166, 0.0002330 
and 0.0002583 m3/s), five feed concentrations (0.000778, 
0.001556, 0.002335, 0.003891 and 0.006226 kmol/m3) and 
five feed pressures (5.83, 7.77, 9.71, 11.64 and 13.58 atm), 
for a total number of 73 experiments.

Validation of the model was performed by comparing the 
calculated values obtained by following the different steps of 
Fig. 2, to those obtained experimentally by Sundaramoorthy 
et al. (2011). This comparison was made based on the cor-
relation coefficient (R2), the mean absolute error (MAE) and 
the root mean squared error (RMSE), for the permeate and 
retentate outputs concentrations (Cp and Cr), chlorophenol 
rejection (Rej), flow rate and retentate pressure at the mem-
brane outlet (Qr and Pr). The MAE and RMSE are given by 
these equations:

where Vi,exp , Vi,cal and n are the experimental values, cal-
culated values and number of compounds in the data set, 
respectively.

(23)MAE =
1

n

n∑

i=1

|||
Vi,cal − Vi,exp

|||

(24)RMSE =

�∑n

i=1
(Vi,cal − Vi,exp)

2

n

Table 2 summarizes the results obtained from validation 
of the model obtained. This table shows that in general, the 
predicted values were obtained with satisfactory correlation 
coefficients and errors. The rejection of chlorophenol shows 
a correlation coefficient lower than that of the permeate and 
retentate; but it remains acceptable, since, statistically, the 
correlation between the experimental and calculated value 
can be considered strong if it is greater than 0.5.

The validation results obtained in this work are com-
pared to those conducted by Sundaramoorthy et al. (2011) in 
Table 3. This table shows slight differences in MAE (%), for 
Qr, Cp and Rej. However, the difference lies in the calcula-
tion of mass transfer coefficient. The latter requires physical 
properties such as the diffusion (Di), viscosity (μi) and den-
sity (ρi) coefficients relative to the feed and permeate, which 
in our case were obtained using the correlations established 
by Koroneos et al. (2007).

The important MAE of Cp can be attributed to the exper-
imental error of measurement, because the concentration 
analysis can provide poor accuracy for low concentrations. 
This accuracy also depends on the reliability of the experi-
mental method and can be affected by the uncertainties of 
measures. Therefore, the model developed is reliable and can 
be used for parametric sensitivity analysis.

Parametric sensitivity analysis method

In this work, the artificial neural network (ANN) method 
coupled with the desirability function was used to analyze 
the parametric sensitivity of five operating parameters 
reverse osmosis on chlorophenol rejection and energy 
consumption.

The parameters which were chosen to maximize chloro-
phenol rejection by the reverse osmosis process are the feed 
flow rate (Qf), the initial concentration of chlorophenol (Cf), 
the temperature (T), the initial pressure (Pf) and the water 
recovery rate (Y). The feed rate was varied from 0.00001 to 
0.0001 m3/s, so as to respect the upper limit of the manufac-
turer’s membrane (Al-Obaidi et al. 2018a, b). The concentra-
tion of chlorophenol is very variable and depends on the type 
of wastewater, the range of 0.0005 and 0.007 kmol/m3 was 
chosen based on the concentrations of Sundaramoorthy et al. 
(2011). The initial pressure and the operating temperature 

Table 2  Model validation parameters

Parameter Cp (kmol/
m3)

Rej (%) Cr (kmol/
m3)

Qr  (m3/s) Pr (atm)

R2 0.934 0.733 0.999 0.966 0.999
MAE 0.00011 0.040 0.000058 0.0000042 0.56
RMSE 0.00015 0.051 0.00009 0.0000005 0.66

Table 3  Comparison of model validation, realized in this work and 
by Sundaramoorthy et al. (2011)

Parameter Qr Cp Rej Ref.

MAE (%) 2 12 6 This work
MAE (%) 4 10 5 (Sunda-

ramoorthy 
et al. 2011)
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are selected between 5–24 atm and 25–40 °C, respectively. 
The choice of these different intervals was made so as to 
respect the limits of the operating conditions of the spiral 
membrane considered and respect the transport parameters 
(Aw and Bs) (Sundaramoorthy et al. 2011). The fifth param-
eter is the water recovery rate which indicates the overall 
efficiency of the water in the system. Although this parame-
ter is defined as the ratio between the permeate flow rate and 
the feed water flow rate, it can be considered as an operating 
parameter of RO system (Madaeni and Eslamifard 2010; Lee 
et al. 2014). It’s one of the most important factors affecting 
the whole process that must be very high. But the concen-
tration polarization increases with the water recovery rate 
and deteriorates the permeate quality. This water recovery 
rate varies widely and is influenced by system configuration, 
membrane type and feed water component quality. The range 
of 7 to 40% was considered for the water recovery rate, fol-
lowing the choice of the single stage membrane (Jbari and 
Abderafi 2018).

The different operating parameters of the RO unit do 
not have the same dimensions, which makes it difficult to 
compare the coefficients. The transformation of real factors 
into coded factors (Xi) is essential, to express the concen-
trations of permeat and retentate according to the different 
variables using a homogeneous model. This codification can 
also increase the precision of this model and simplify the 
calculation procedures.

The numerical experiments were designed on the basis 
of the central composite design (CCD) technique with 
three coded levels. The factorial portion of CCD is a full-
factorial design with all combinations of the fifth operating 
variables, at two levels attributing (+ 1) to high value and 
(− 1) to low one. The coded level (0) is composed of central 
points, which is the midpoint between the high and low lev-
els. Table 4 shows Levels of Central Composite Design. So, 
the chosen CCD allows us to conduct forty-three numerical 
experiments with five input variables.

Subsequently, the parametric sensitivity of the unit of RO 
was studied by simulation using the mathematical model 
developed and programmed under the Python language, 

following the numerical experiment plan. All the operating 
conditions of the process were kept fixed, with the exception 
of feed flow rate, initial chlorophenol concentration, tem-
perature, feed pressure and water recovery rate which were 
varied to test their effects on the concentrations of permeate 
and retentate.

Results and discussion

The results of numerical experiment obtained by follow-
ing the CCD were used to develop ANN model that allows 
predicting permeate and retentate concentrations of reverse 
osmosis process to remove chlorophenol. These results of 
forty-three values were randomly subdivided into two groups 
allocating 75% of the points to perform the neural networks 
training and the remaining 25% of the points was used to val-
idate the predictions of the developed neural network mod-
els. The ANN is optimized by learning to minimize the MSE 
error function by seeking a set of connection weights that 
can allow the network to produce results that are identical 
or possibly equal to the target values. Levenberg–Marquardt 
(LM), Bayesian Regulation (BR) and Scaled Conjugate Gra-
dient (SCG) back projection algorithms were tested using 
five neural networks in the input layer and two neurons in the 
output layer, to study the performance indicators. The hyper-
bolic tangent sigmoid transfer function (TanSig) and linear 
transfer function were used as a transfer function for the hid-
den layer and the output layer, respectively. The number of 
neurons in the hidden layer was obtained by minimizing the 
MSE function. Figure 3 shows the variation of the MSE as 
a function of the number of neurons. This figure shows that 
the minimum value of the MSE was obtained for a number 
of neurons in the hidden layer equal to three both for the 
concentrations of the permeate and the retentate.

In this case, the optimal structure of the ANN model 
developed is given in Fig. 4. This figure shows that the iden-
tified neural network comprises three neurons in the hidden 
layer. So the best network is represented with (5-3-2) topol-
ogy. The feed flow rate, feed concentration, temperature, 
pressure and water recovery rate were defined as input vari-
ables in the ANN, while permeate concentration and reten-
tate concentration were assigned as two output variables.

The reliability of the ANN model developed was per-
formed using a set of tests based on two statistical quantities 
such as the correlation coefficient (R2) and the mean squared 
error (MSE). The statistical regression results obtained for 
the three algorithms tested are grouped in Table 5. This table 
shows that the three learning algorithms tested are compa-
rable but the best predictions of permeate and retentate con-
centrations have been predicted with correlations of 0.971 
and 0.999, respectively. These predictions were made with 
very low MSE. However, the comparison made allowed us to 

Table 4  Levels of central composite experience design

Variables Factors Levels

Xi  − 1 0  + 1

Feed rate  (m3/s) Qf 0.00001 0.000055 0.0001
Initial concentration of 

chlorophenol (kmol/
m3)

Cf 0.0005 0.00375 0.007

Temperature (°C) T 25 32.5 40
Feed pressure (atm) Pf 5 14.5 24
Water recovery rate (%) Y 7 23.5 40
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retain the LM algorithm. It is a more stable and faster train-
ing algorithm that uses two combined minimization tech-
niques such as gradient descent and Gauss–Newton methods 
(Ozonoh et al. 2020).

Table 6 shows the comparison of correlation coefficient 
and MSE of the two outputs (Cp and Cr) prediction for 

training, validation, and prediction sets of data, using the 
best algorithm. This comparison shows that all the correla-
tion coefficients tend toward 1 and the MSEs tend toward 
zero, both for training and validation, demonstrating the 
accuracy of the model for the training and validation data. 
Note that the different data sets that were not present in the 
training data are used for validation, which proves the valid-
ity of the ANN model. So, the calculated values of permeate 
and retentate concentrations based on the (5-3-2) topology is 
completely in accordance with the numerical data for train-
ing, validation and all subsets.

In Figs. 5 and 6, the calculated ANN model values were 
compared to the experimental numerical simulation values 
for permeate and retentate concentrations, respectively. 
These two figures show that the different points follow 
the diagonal with correlation coefficients that tend toward 
1, which indicates that the ANN model produces very 

Fig. 3  Variation of the mean 
square error on the number of 
neurons in the hidden layer
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Fig. 4  ANN architecture developed for prediction of retentate and 
permeate solute concentration

Table 5  Best performance 
obtained for each learning 
algorithm

Algorithm Function of the layer Number Permeate concentration Retentate concen-
tration

Hidden Output Neuron R2 MSE R2 MSE

LM TanSig Purelin 3 0.971 8 × 10−8 0.999 3 × 10−8

BR TanSig Purelin 3 0.973 8 × 10−8 0.998 8 × 10−8

SCG TanSig Purelin 3 0.646 104 × 10−8 0.987 4 × 10−8

Table 6  Performance comparison obtained by LM, for training and 
validation

Training Validation All

R2 0.999 0.996 0.997
MSE 2 × 10−8 1 × 10−7 1 × 10−7
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satisfactory results. The performance of the model was also 
obtained by representing the distribution of the residues as 
a function of the predicted values of the permeat and reten-
tate concentrations in Figs. 7 and 8, respectively. These two 
figures show that the points are randomly distributed around 
the zero axes, for the permeat and retentate.

For quantifying the importance of variables in artifi-
cial neural networks, the Garson methodology was chosen 
(Garson 1991). This method allows obtaining precisely the 

importance of the variables according to its comparison with 
other methods by Olden and Jackson, (2002). According to 
this algorithm, the determination of the relative importance 
is calculated by:

where:  RIi, the relative importance of each variable and Si, 
the sum of the contributions of input neurons with:

where rij, the relative contribution of each input neuron; 
i, j, k represent the input, hidden and output layers of the 
network, respectively; v, the total number of nodes in the 
hidden layer of the network and n, the total number of input 
variables in the neural network.

By following these relations, the RI calculation of the 
five independent variables on permeate and retentate con-
centrations was obtained using the matrix data containing 
the input–output–hidden neuron connection weights of the 
ANN (Table 7).

The results of the calculation of the RI of the five input 
variables obtained are represented in Fig. 9. This figure shows 
the classification of the independent variables, in the order of 
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Fig. 5  Comparison between numerical and predicted values of per-
meate
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Fig. 7  Residual distribution, for prediction of permeate concentration
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Fig. 8  Residual distribution, for prediction of retentate concentration

Table 7  Input–output-hidden neuron connection weights matrix

Parameter Neuron 1 Neuron 2 Neuron 3

Inputs Qf 0.0318 0.3542 0.2733
Cf − 1.0873 1.3053 − 0.7937
T 0.0216 0.7772 0.9316
Pf 0.0048 0.0950 − 0.0368
Y − 0.1100 1.1983 − 0.0606

Outputs Cr − 0.6792 0.3341 0.0625
Cp − 0.2209 − 0.0324 − 1.1841
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their effect on how the neural network classifies on the out-
put (Olden and Jackson 2002). The feed concentration has 
the highest relative importance value indicating an effect of 
70.83% on the retentate and 46.04% on permeate. The tem-
perature and feed rate have a greater effect on the permeate 
which is 37.25% and 11.20%, respectively; while on the reten-
tate the effect of the temperature is 9.74% and the feed flow 
rate is 4.72%. In regard to the effect of the water recovery rate, 
it is more important on the retentate concentration than on the 
permeate concentration. On the other hand, the supply pressure 
has the least contribution, with value of 1.54 and 1.05%, for 
Cp and Cr, respectively. These results indicate that this vari-
able does not contribute significantly to the predicted values 
of permeate and retentate concentrations, but it must be taken 
into account in the parametric sensitivity analysis, because it 
has a considerable impact on the RO process (Madaeni and 
Eslamifard 2010).

The performance of the proposed RO-PV system was eval-
uated under the optimal operating parameters of the reverse 
osmosis. These values were obtained with ANN coupled with 
the desirability function. The advantage of the latter is that 
it allows the simultaneous optimization of several response 
variables (Derringer and Suich 1980). It is based on the trans-
formation of each response obtained into a value of desirabil-
ity, then as a function of total desirability. This is one of the 
most widely used methods in the industry to provide the most 
desirable response values (Gadhe et al. 2013; Borbaa et al. 
2018). The optimal values parameters were obtained with a 
desirability function that tends to 1. Table 8 presents the out-
comes obtained for each input parameter. However, it can be 
seen that the removal of chlorophenol can be maximized for 
a small value of the feed flow rate and a higher temperature. 
Feed concentration, temperature, and water recovery rate have 
competitive effects that determine the rejection of chlorophe-
nol. However, wastewater strongly loaded with chlorophenol 

requires a low feed pressure and a high water recovery rate, 
to avoid or reduce the phenomenon of clogging membranes.

By exploiting the optimal values obtained, the quantity 
of water produced, the chlorophenol rejection and PV power 
consumption are calculated. Table 9 summarizes the results 
obtained. The chlorophenol rejection is calculated using 
Eq. (13) with optimal values of permeate and retentate. Under 
the optimal conditions of the single-stage reverse osmosis pro-
cess, a chlorophenol rejection equal to 91% can be eliminated. 
The optimal quantity produced of permeate was obtained equal 
to 1.152 m3/d, by considering 8 h of operation of the pump. 
Using the optimal values of the feed pressure and the water 
recovery rate and with Pump efficiency η equal to 85%, the 
daily power consumption was obtained at 0.922 kWh/d. Sub-
sequently, the number of photovoltaic solar panels needed to 
power the reverse osmosis unit was determined. The average 
monthly solar irradiation of the Kenitra city in Morocco was 
obtained using the online PVGIS software of the Photovoltaic 
Geographical Information System. According to simulated 
data, the worst month reached irradiance of 140.3 kWh/m2 
in November (Fig. 10), corresponding to solar irradiation of 
4.7 kWh/m2/d. Then Eq. (21) was used to calculate the peak 
power of the PV collectors. Knowing that the peak power 
delivered by each polycrystalline panel marketed is 250 Wp, it 
is deduce that the number of panels to install is equal to 1. For 
energy storage the Eq. (22) was utilized to compute the energy 
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Table 8  Optimal values for 
input and output variables

Input parameters Output parameters

Qf  (m3/s) T (°C) P (atm) Y (%) Cf (kmol/m3) Cp (kmol/m3) Cr (kmol/m3)

10−4 40 9.713 40 7 × 10−3 0.000976 0.0110158

Table 9  Performance of the proposed RO-PV system
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capacity of the batteries for a storage period of 7 days. Table 9 
gives the results obtained. These results show the performance 
of RO-PV system that can be developed under optimal operat-
ing parameters to treat wastewater.

With the same single-stage spiral wound RO process, 
Sundaramoorthy et  al. (2011) have obtained a maxi-
mum chlorophenol rejection of 83%, for feed pressure of 
13.58 atm, feed flow rate of 2.583 × 10−4m3/s, operating 
temperature of 31 °C and water recovery rate of 22%. These 
results show that the methodology followed in this work 
improves the experimental chlorophenol rejection of Sunda-
ramoorthy et al. (2011) by 10%, while increasing the total 
water recovery by 82%. The energy consumption obtained in 
this work is 0.804 kWh/m3 versus 2.044 kWh/m3 according 
to Sundaramoorthy et al. (2011). So, for the proper function-
ing of the process, it is necessary to work with the optimum 
operating conditions.

The efficiency of the RO-PV system can only reduce 
energy consumption and protect the environment from the 
harmful effects of factories that emit  CO2. Integrating PV 
into an RO system is always less expensive and more eco-
logical than a conventional system and particularly if we 
refer to the PV-SWRO power plants which become economi-
cally feasible for a fuel energy cost of 26 $/GJ and a cost of 
the photovoltaic generator from 3$/Wp (Ali et al. 2011). 
Manolakos et al. (2008) compare the cost of two seawater 
desalination RO systems. This cost comparison includes 
both the cost of the electrical power system and the cost 
of the desalination system. Their results show that the cost 
of the PV-RO system is much lower than that of RO-Solar 
Rankine system. Photovoltaic technology is developing rap-
idly with falling prices. The lowest retail price for a crystal-
line silicon solar module, in 2012 it was 1.1$/Wp (0.81€/
Wp) and the lowest price for the thin-film module was 0.84 
$/Wp (0.62 €/Wp) (Darwish et al. 2015). These costs infor-
mation are attractive and encouraging for the application of 
RO-PV systems to wastewater. The techno-economic anal-
ysis of the process developed in this work for wastewater 
treatment will be carried out in perspective.

Conclusions

In this study, an RO-PV process was chosen to treat waste-
water containing chlorophenol. Parametric sensitivity analy-
sis was followed successfully, for five factors that influence 
the performances of this system.

As a first step, the phenomenological model relating 
to the spiral wound RO process was developed and pro-
grammed in the python language. Its validation was carried 
out based on experimental data available in the literature. 
The model can be predicting all parameters with satisfac-
tory MAE. Then, this model was exploited to analyze the 

parametric sensitivity by performing numerical experiments, 
according to the central composite factorial design. The data 
obtained were used to develop an ANN model. The opti-
mal neural network configuration obtained has one hidden 
layer with three neurons, having five variables as input and 
two outputs. From the three learning algorithms tested for 
training, the LM was retained to predict permeate and reten-
tate concentrations with correlations of 0.999 and very low 
MSE equal to 2 × 10−8. The calculation importance of the 
five parameters revealed that the feed concentration is the 
main factor affecting the ANN configuration but the effect 
of feed pressure can be disregarded.

In the second step, the optimization of the RO process 
was realized, with the ANN model coupled to the desir-
ability function. This optimization was carried out with 
objective function to maximize the chlorophenol rejection 
in the retentate and as decision variables the feed flow rate, 
initial concentration of chlorophenol, temperature, feed pres-
sure and water recovery rate. Then, the performance of the 
RO-PV system was tested under its optimal operating condi-
tions. The results obtained showed that 91% of the chloro-
phenol can be removed by RO of single-stage configuration, 
using a feed flow rate equal to  10−4  m3/s, an initial concen-
tration value of 7 × 10−3 kmol/m3, a temperature of 40 °C, 
an initial pressure of 9.713 atm and a water recovery rate of 
40%. The evaluation of the power consumption of the RO 
unit allowed us to deduce that a photovoltaic solar panel with 
a peak power of 280 Wp and a battery capacity of 9.22 kWh 
is sufficient to produce 1 m3/day.

In perspective, a techno-economic analysis to assess the 
investment and operating cost of the RO-PV system will be 
studied in further related research.
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