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There are many theories about the causes of climate change but 
little disagreement that it is happening. Climate change and sea-
level rise (SLR) will alter hydrologic patterns, resulting in changes 
in the salinity intrusion dynamics of coastal rivers where many 
water utility intakes are located. The increase in the degree of 
saltwater intrusion along the Georgia and South Carolina coasts 
during the record-breaking drought in the southeastern United 
States from 1998 to 2002 showed how climate change and SLR 
increase the threat to freshwater estuarine intakes. This develop-
ment also underscored utilities’ need for reasonable estimates of 
future changes in the frequency, duration, and magnitude of 
salinity intrusion near their water intakes.

PROJECT DESCRIPTION
Project objectives. The objectives of this project were twofold:
•  Develop an approach, or template, that coastal utilities could 

use to evaluate the threat posed by climate change and SLR to 
their intakes.
•  Demonstrate the effectiveness of the approach by applying 

it to two separate estuarine systems in Georgia and South 
Carolina.

The authors, working with the US Geological Survey (USGS), 
had previously developed specific-conductance models of the 
Lower Savannah River and Grand Strand region estuarine sys-
tems, which feature two and three municipal freshwater intakes, 

respectively (Conrads et al, 2007, 2006). The models convert 
inputs that primarily represent freshwater stream flow and sea 
level into predictions of specific conductance at several locations. 
In both systems it was found that the relationships among sea 
level, freshwater stream flow, and salinity intrusion are complex 
and nonlinear and that weather extremes such as droughts and 
increased sea levels brought by hurricanes can produce large 
intrusion episodes. It is possible that the negative effects of climate 
change experienced by utilities could be exacerbated by increasing 
interannual climate variability (specifically, more droughts) and 
escalating freshwater demands from upstream farms, industries, 
and water utilities.

Project study areas. The Savannah River estuary is a deltaic 
system that branches into a series of interconnected distributary 
channels (Figure 1). Among the area’s most important resources 
are the Savannah National Wildlife Refuge and the nearby port 
terminals of the Savannah Harbor. Two municipal water intakes 
are in the freshwater portion of the upper estuary. The city of 
Savannah maintains an intake on the Abercorn Creek tributary, 
approximately 1 mi upstream of USGS gauge 02198840, which 
provides specific conductance and water level measurements. The 
intake for the Beaufort–Jasper Water and Sewer Authority is 
located at a canal that withdraws from the Savannah River 
approximately 15.5 river mi upstream of USGS gauge 02198840. 
The salinity model used in the current project, the Savannah River 
Model-to-Marsh (M2M), was originally developed to evaluate 
the effect of a proposed deepening of the Savannah Harbor on 
the refuge and other areas. The USGS gauging stations on the 
Savannah River near Clyo (02198500) and at Fort Pulaski 

Many coastal utilities will find it challenging to adapt to future 
climate conditions in which sea-level rise and extreme weather 
cycles could increase the frequency and duration of seawater 
intrusion into estuaries. This article describes a method of assessing 
risk to utility water supplies and details its use in two coastal 
systems supplying freshwater to municipalities in Georgia and 
South Carolina. The method uses long-term weather and 
hydrologic data to develop empirical models that represent the 

seawater  intrusion process  in the vicinity of an  intake. Data 
available from past droughts and storms provided sufficient 
variability to model the range of anticipated future weather and 
hydrologic conditions. The model can be varied using permutations 
of historical conditions and climate change forecasts to estimate 
future impacts at the intake. The models and data are deployed in 
a spreadsheet program that features a graphical user interface and 
supporting graphics, making it readily usable by utility personnel. 

Estimating seawater intrusion impacts on coastal intakes 
as a result of climate change

Edwin A. RoEhl JR.,1 Ruby C. dAAmEn,1 And John b. Cook1

1Advanced Data Mining International, Greenville, S.C.

Keywords: climate change, intake, model, risk analysis, salinity intrusion, sea-level rise

A full report of this project, Estimating Salinity Effects Due to Climate Change 
on the Georgia and South Carolina Coasts (4285), is available for free to 
Water Research Foundation sub scribers by logging on to www.waterrf.org.



Roehl et al  |  http://dx.doi.org/10.5942/jawwa.2013.105.0131
Journal - American Water Works Association
Peer-Reviewed

E643

2013 © American Water Works Association

(02198980) provided the data representing the model’s input 
boundary conditions. 

Figure 2 shows the second study area, which is the estuarine 
system composed of the Lower Pee Dee River, the Waccamaw 
River tributary, and the Atlantic Intracoastal Waterway (AIW). 
The Pee Dee River (named the Yadkin River in North Carolina) 
flows through several hydroelectric facilities, the last one approx-
imately 15 mi upstream from the state border. The reach of the 
AIW from just south of Little River Inlet to just north of Hagley 
Landing provides freshwater for the coastal communities of the 
Grand Strand.

Three municipal surface water intakes are in the tidal freshwater 
portions of the system. During a drought from 1998 to 2002, salin-
ity intrusion forced the intake near USGS gauge 021108125 to 
close until increased stream flow moved the freshwater–saltwater 
interface downstream. Figure 2 also shows the USGS monitoring 
sites on the Waccamaw River and AIW that provided some of the 
data used to develop the specific-conductance model, referred to 
as the Pee Dee River and Atlantic Intracoastal Waterway Salinity 
Intrusion Model (PRISM). The model was developed to support 
the process of the relicensing of the hydroelectric facilities by the 
Federal Energy Regulatory Commission, which occurs at 50-year 
intervals. Additional information about the research effort is avail-
able elsewhere (Conrads et al, 2013; Roehl et al, 2012).

APPROACH
Model descriptions. M2M and PRISM are actually decision 

support systems (DSS) that integrate several empirical specific-
conductance submodels, the real-time databases needed for run-
ning simulations, graphical user interfaces, and streaming graph-
ics. The DSSs  are  spreadsheet  applications1 that are easily 
distributed and immediately usable by water resource managers 
and other stakeholders. Deploying the models in this transparent 
form gives resource managers and stakeholders with varying 
levels of computer skills equal access to the scientific knowledge 
they need to make the best possible decisions (Roehl et al, 2006).
The original DSSs were modified to allow users to modulate 

the sea-level input and unregulated stream flows, and the PRISM 
submodels were redeveloped using an additional 6.5 years of field 
data. These modified DSSs were renamed M2M-2 and PRISM-2. 
The data used to develop the M2M submodels and run simula-
tions span 11 years from 1994 through 2005, and the PRISM-2 
data span 14 years from 1995 to 2009. Both data sets incorporate 
a broad range of climate and sea-level conditions, including 
record droughts, high rainfall El Niño climate periods, and hur-
ricanes. Developing the empirical submodels from this range of 
data makes them applicable to studies involving climate change 
and SLR scenarios.

FIGURE 1   Lower Savannah River estuarine system 

Adapted from Conrads et al, 2013
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The submodels were developed using multilayer perceptron 
artificial neural network models, commonly used for process 
engineering applications (Jensen, 1994). They synthesize nonlin-
ear functions to fit multivariate data and offer significant advan-
tages over traditional mechanistic modeling codes for modeling 
estuary hydrology, including prediction accuracy, speed of devel-
opment, execution speed, and breadth of deployment options 
(Conrads & Greenfield, 2008; Conrads & Roehl, 1999).

Forecasting the effect of climate change at an intake. Estuary 
salinity variability is largely driven by stream flow and tidal water 
levels, both of which are affected by climate change. Forecasting 
of future stream flows requires integration of global circulation, 
regional circulation, watershed runoff, and salinity intrusion 
models (Figure 3). Global circulation models (GCMs) make large-
scale (> 250-km2 grid) estimations of precipitation and tempera-
ture conditions for various carbon emission scenarios. These 
scenarios are typically 100-year projections. To generate precipi-
tation and temperature predictions for a watershed (approximate 
12-km2 grid), the GCMs are coupled to regional circulation 
models that generate regional precipitation and temperature 
predictions, which are input to a watershed model. The watershed 
model then predicts the stream flow inputs to an estuary model 
such as PRISM-2. The Pee Dee Basin stream flow forecast was 
generated by the University of South Carolina at Columbia and 
the South Carolina Sea Grant Consortium for the years 2055–
2069, 60 years from the start of the PRISM-2 study period. The 

FIGURE 3   Conceptual approach to modeling the effects of 
 climate change on salinity intrusion

Adapted from Conrads et al, 2013

ANN—artificial neural network, GCM—global circulation model, 
HSPF—Hydrologic Simulation Program–Fortran
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forecast was made using the Hydrologic Simulation Program–
Fortran (HSPF) watershed model from the US Environmental 
Protection Agency and the ECHO GCM (Legutke & Ross, 1999). 
It was used to predict future Pee Dee Basin stream flow (Q) from 
a climate forecast by ECHO for input to PRISM-2. The HSPF 
application was calibrated using approximately 30 years of his-
torical climate and stream flow data. PRISM-2 used stream flow 
inputs corresponding to five gauging stations. Figure 4 compares 
predictions made by the HSPF application with the measured Q 
at the station with the historically highest stream flows, USGS 
gauge 02131000 on the Pee Dee River.

Of the many existing GCMs, four were evaluated. ECHO was 
selected because it predicted historical low stream flow conditions 
most accurately when coupled with the HSPF application. To 
predict future stream flows, ECHO was run with the A2 future 
carbon emissions scenario, which assumes that nations will con-
tinue to pursue their interests individually rather than coopera-
tively in dealing with climate change (IPCC, 2000). Alternative 
emissions scenarios produce different climate forecasts.

RESULTS
The results in this section help demonstrate how large 

amounts of seemingly complex data can be reduced to forms 
that are readily understood by resource managers. M2M-2 
output is given in practical salinity units (psu), and PRISM-2 
output is in specific-conductance units of microsiemens per 
centimetre. The upper salinity limit for drinking water is 0.5 
psu, or approximately 1,000 µS/cm. 

For the Lower Savannah River, Figure 5 shows the measured 
salinity at USGS gauge 02198840 with the freshwater Q at USGS 
gauge 02198500 for the 11-year study period. Figure 5 also 

shows the predicted salinity at gauge 02198840 when historical 
input data were used; as shown in the figure, predicted salinity 
is sufficiently accurate to largely obscure the measured values. At 
low Q, salinity spikes appear at 28-day intervals, coincident with 
the new moon and indicating the role of tidally driven sea levels 
in intrusion episodes. Figure 6 shows a detail of simulation results 
for three scenarios: historical Q (∆Q = 0%) with zero SLR (iden-
tical to the predictions in Figure 5), ∆Q = 0% with a 1.0-ft SLR, 
and ∆Q = –10% with a 1.0-ft SLR. The detail shows that a 1.0-
ft SLR causes spikes to appear and that their magnitude and 
duration increase with a Q decrease.

Forty-two scenarios were run in which SLR and Q were modu-
lated parametrically, and statistics were calculated for each scenario 
that described the frequency and duration of episodes when the 
water supply intake would likely have to be shut down. For 
example, Figure 7 shows the percentage of study period days (% 
days) when the salinity exceeded 0.5 psu in tabular form (part A) 
and as a three-dimensional response surface (part B). The table 
indicates that SLR increases the percentage more than Q reduction. 
For example, at ∆Q = 0% and SLR = 3.0 ft, % days = 13.6. At ∆Q 
= –25% and SLR = 0 ft, % days is only 1.0. The surface shows that 
% days increases linearly as ∆Q becomes more negative and expo-
nentially with increasing SLR. The combined effect is that % days 
increases much more per decrement in ∆Q at high SLR than at low 
SLR. For example, at SLR = 0 ft, % days increases only slightly as 
∆Q decreases from 0 to –25%. At SLR = 3.0 ft, the percentage 
increases much more as ∆Q decreases to –25%. Similarly, at ∆Q 
= 0 ft, % days increases less as SLR increases from 0 to 3.0 ft than 
at ∆Q = –25%. Given that the details of how climate change and 
SLR will evolve are uncertain, results like those shown in Figure 
7, which were derived from a predictive model developed from a 
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large and widely ranging data set, provide perhaps the most cred-
ible information available to utilities concerned about the long-
term viability of their current intake.

For the Waccamaw River, Figure 8 shows the measured spe-
cific conductance at USGS gauge 021108125 with stream flow 
Q for the 14-year study period. Here Q was aggregated from 
stream flows measured at five upland gauges. The measured 
specific conductance starts at day 2,305. Also shown is the 
specific conductance predicted by the artificial neural network 
submodel when historical input data were used. Three pro-
longed periods of high specific conductance appear in the vicin-
ities of days 2,300, 2,600, and 4,400, which coincide with 
periods of low Q. It is clear that the nature of salinity intrusion 
here is different from that at gauge 02198840 on the Savannah 
River (Figure 5), suggesting that details of the process physics 
that cause behaviors of interest can vary greatly from location 
to location and that it is essential that predictive models used 
as planning tools be customized for each location.

Salinity intrusion occurs when two of the following three con-
ditions—low stream flow, high tidal range, and/or high mean sea 
levels—are met. In the Savannah River example, the salinity 
spikes in Figure 5 are of short duration and occur at 28-day 
intervals when Q is low and the gravitational force of the moon 
causes the tidal range to be high. High mean sea levels just 
increase the magnitude of the spikes. In the Waccamaw River 
example, the intrusions shown in Figure 8 are less periodic and 
of longer duration because the tidal range is less influential than 
stream flow and sea level.

Figure 9 shows simulation results for three scenarios: his-
torical Q (∆Q = 0%) and sea level (identical to the predictions 
in Figure 8); ∆Q = 0% and sea level + 1.0-ft SLR; and the 
ECHO–HSPF forecast Q with historical sea level + 1.0-ft SLR. 
The simulation period is 1995–2009 for the first and second 
scenarios and 2055–2069 for scenario 3. Scenario 2 indicates 
that increased SLR increases the magnitude, duration, and fre-
quency of specific-conductance spikes. Scenario 3 generally 
shows spikes occurring at times that vary from the first two 
scenarios and are of shorter duration. Conrads and colleagues 
(2013) found that the % days when the specific conductance 
exceeded 1,000 µS/cm were forecast to increase in the spring 
and fall and decrease in the winter and summer. 

As in the previous Savannah River analysis, 42 Q–SLR sce-
narios were run to predict specific conductance at USGS gauge 
021108125, and the % days when the predicted specific con-
ductance exceeded 1,000 µS/cm was calculated (Figure 10). 
Similar to the results for gauge 02198840 (Figure 7), % days 
was affected more by SLR than by ∆Q. However, the three-
dimensional response surface shown in Figure 10, part B, is 
more planar than that shown in Figure 7, part B, such that the 
effect of ∆Q is relatively constant with increasing SLR. Similarly, 
the numbers of predicted salinity intrusion episodes lasting at 
least seven, 14, and 21 days were counted for the study period. 
Figure 11 shows the number of 7-day intrusions. This type of 
information indicates how frequently an intake might be inun-
dated for extended periods, a major concern for utilities with 
limited source or storage options.
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Table 1 compares % days when the specific conductance 
exceeded 1,000, 2,000, and 3,000 µS/cm for the historical specific 
conductance, the specific conductance predicted from the his-
torical Q with SLR, and the specific conductance predicted from 
the ECHO–HSPF Q with SLR. The % days of the single histori-
cal specific-conductance scenario were comparable to the two 
prediction scenarios with zero SLR. The higher % days of the 
historical Q scenarios originated from historical, extended 
droughts, which were not a factor in the ECHO–HSPF Q sce-

narios. The droughts caused the long-duration intrusions in the 
first two scenarios in Figure 9.

APPLICATIONS AND RECOMMENDATIONS
The general problem for utilities that want to plan for climate 

change and SLR is assessing how their specific resources will be 
affected. Initially, the problem might seem intractable because 
the details about how climate will evolve are unknowable with 
any certainty. However, the current project has demonstrated 
an approach that produces tools that are straightforward to use 
and should be reliable if utilities can be flexible about the degree 
and timing of anticipated changes in climate and sea level. The 
tools are tables and graphics that predict how often and for how 
long intakes will be inundated by salinity intrusion for any 
reasonable combination of freshwater stream flow change or 
SLR. Similar analogs are available for inland water resources 
such as lakes, streams, and groundwater, and the anthropogenic 
forcing includes human demand. The two essential elements that 
were extensively leveraged for both the Savannah and Wacca-
maw River intakes were 
•  long-term time series data that captured a broad range of 

complex natural system behaviors and inherently span much of 
the change that experts predict will come with climate change, 
as manifest in the ECHO A2 scenario and
•  predictive models that accurately represent the process phys-

ics captured by the long-term time series data.
The first element, long-term time series data, is of fundamental 

importance and obviously time-consuming to obtain if not 
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3.0-ft
SLR

56

61

68

71

73

76

A B

TABLE 1 Percentage of days with SC > 1,000, 2,000, and 3,000  
µS/cm at USGS gauge 021108125

SLR
ft

SC—% Days > 1,000, 2,000, and 3,000 µS/cm

Historical SC Historical Q ECHO–HSPF Q

1,000 2,000 3,000 1,000 2,000 3,000 1,000 2,000 3,000

0.0 7 4 4 5 4 3 4 3 2

1.0 11 9 7 7 5 4

2.0 18 15 13 11 9 7

3.0 23 20 19 15 13 11

Source: Roehl et al, 2012

HSPF—Hydrologic Simulation Program–Fortran, Q—flow, SC—specific conductance,  
SLR—sea-level rise, USGS—US Geological Survey

Blank cells indicate no historical data for these parameters.
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already in hand. The second element, predictive models, can be 
developed at any time so long as a reasonable amount of data is 
available. The models are readily updated as new data become 
available. For some systems, such as estuaries, empirical models 
like those used here can be developed more quickly and be more 
accurate than conventional mechanistic modeling codes. Ideally 
data and models are already available and merely need to be 
exercised to produce the tables and graphics needed by resource 
managers to begin assessing risk and planning for climate change.

ACKNOWLEDGMENT
This research on which this article is based was made possible 

by Tailored Collaboration assistance from the Water Research 
Foundation and the Beaufort–Jasper Water and Sewer Authority, 
Okatie, S.C. In addition, partial funding was obtained through the 
National Oceanic and Atmospheric Administration. The research 
was performed as a collaboration among Advanced Data Mining 
International in Greenville, S.C., the US Geological Survey (USGS), 
the University of South Carolina at Columbia, and the South 
Carolina Sea Grant Consortium in Charleston, S.C. The authors 
would like to especially recognize the invaluable contribution of 
Paul Conrads with the USGS Water Science Center, Columbia, S.C.

AbOUT THE AUTHORS
Edwin A. Roehl Jr. (to whom 
correspondence should be addressed) is 

 chief technical officer and co-founder of 
Advanced Data Mining International 
(ADMi), 3620 Pelham Rd., PMB 351, 
Greenville, SC 29615 USA;  
ed.roehl@advdmi.com. He has applied 
artificial intelligence and data mining 

techniques to process engineering problems for 30 years and has 
worked in many industries, including oil and gas, metals, and 
polymers. Since 1997 Roehl has applied advanced industrial 
process modeling and control approaches to optimization 
problems related to water resources, water treatment and 
distribution, and water security. He holds BS and MS degrees in 
mechanical engineering from Rensselaer Polytechnic Institute, 
Troy, N.Y. Ruby C. Daamen is a managing partner at ADMi, 
and John B. Cook is ADMi’s chief executive officer.

FOOTNOTES
1Microsoft Excel®, Redmond, Wash.

PEER REvIEW
Date of submission: 05/01/2013
Date of acceptance: 06/26/2013

REFERENCES
Conrads, P.A. & Greenfield. J., 2008. Effects of Reduced Controlled Releases From 

Lake Thurmond on Salinity Intrusion in the Lower Savannah River Estuary. 
Proc. South Carolina Water Resources Conference, Charleston, S.C.

Conrads, P.A., & Roehl, E.A., 2007. Analysis of Salinity Intrusion in the Waccamaw 
River and Atlantic Intracoastal Waterway near Myrtle Beach, South 
Carolina, 1995–2002. US Geological Survey (USGS) Scientific Investigations 
Report 2007-5110, USGS, Reston, Va.

Conrads, P.A. & Roehl, E.A., 1999. Comparing Physics-based and Neural Network 
Models for Predicting Salinity, Water Temperature, and Dissolved Oxygen 
Concentration in a Complex Tidally Affected River Basin. Proc. South 
Carolina Environmental Conference, Myrtle Beach, S.C.

Conrads, P.A.; Roehl, E.A.; Daamen, R.C.; & Cook J.B., 2013. Simulation of Salinity 
Intrusion Along the Georgia and South Carolina Coasts Using Climate-
change Scenarios. US Geological Survey Scientific Investigations Report 
2013-5036, USGS, Reston, Va.

Conrads, P.A.; Roehl, E.A.; Daamen, R.C.; & Kitchens, W.M., 2006. Simulation of 
Water Levels and Salinity in the Rivers and Tidal Marshes in the Vicinity of 
the Savannah National Wildlife Refuge, Coastal South Carolina, and Georgia. 
US Geological Survey (USGS) Scientific Investigations Report 2006-5187, 
USGS, Reston, Va.

IPCC (Intergovernmental Panel on Climate Change), 2000. IPCC Special Report: 
Emissions Scenarios. Summary for Policymakers. IPCC, Geneva, 
Switzerland.

Jensen, B.A., 1995 (3rd ed.). Expert Systems—Neural Networks. Instrument 
Engineers’ Handbook, Vol. 2: Process Control (B.G. Liptak, editor). CRC Press, 
Boca Raton, Fla.

Legutke, S. & Voss, R., 1999. Hamburg Atmosphere-Ocean Coupled Circulation 
Model ECHO-G. Technical Report 18, German Climate Computer Centre 
(DKRZ), Hamburg, Germany.

Roehl, E.A.; Daamen, R.C.; & Cook, J.B., 2012. Estimating Salinity Intrusion Effects 
Due to Climate Change on the Georgia and South Carolina Coasts, 1995–
2009. Water Research Foundation, Denver.

Roehl, E.A.; Conrads, P.A.; & Daamen, R.C., 2006. Features of Advanced Decision 
Support Systems for Environmental Studies, Management, and Regulation. 
Proc. International Environmental Modeling and Software Society Summit, 
Burlington, Vt.


