Transforming water from SOUPCE to resource

Through best-in-class Electro Coagulation and Ozonation Treatment Systems

Infusing life in the sustainable source of life

An elixir of life, water not only sustains the world, but also shapes civilizations. The world's oldest civilizations find their roots in the river banks. Trade and commerce could have never flourished without seaports. With passage of time, water has been reduced to a mere source of fuelling business and sustaining lives.

The World Health Organisation (WHO) states that nearly 1.1 billion people do not have access to a clean drinking water source. In such scenario, it is imperative that we infuse water conservation into our

day-to-day life, as well as commercial activities. The treatment of industrial and domestic sewage water can make a huge difference to our water consuming patterns.

Electro Coagulation (EC) is a water treatment process that has revolutionized the water treatment industry. A sustainable technology, EC utilizes a highly effective Electrocoagulation process wherein an electric field is applied across plates to remove various contaminants from water.

About us

Established in 2007, Om Sai Enterprise – OSE, located in Vadodara, was incepted with a vision of transforming water from a mere source to resource that can be utilized across varied industries. In the span of half a decade, the company has risen to a level where it can boast of no competition in its field and has paved a way for itself on the path of progress. The core concept of OSE is Research & Development of new innovative technology, waste treatment and waste destruction, by developing of sustainable & cost effective technology for waste water treatment, recycling & reuse in comparison to conventional technology.

OSE excels at clean & green technology, renewable energy projects like waste management, ETP & STP, and consultancy. OSE has developed expertise in designing special purpose renewable energy projects with all kinds of engineering

inputs, customizable according to the needs of the client. Backed by efficient companies in varied fields of environment projects execution, development, engineering, commencement and construction, OSE has managed to build an envious list of projects and clientele and is planning to set its foot in the overseas market. The company also provides technology transfer services.

The secret of OSE's success is its human resource asset that drives the business. The team at OSE includes one of the best & qualified environment consultant & EPC contractor companies along with the team that is technically sound and efficient, which believes in keeping updated with the latest trends and combines passion and dedication with experience from all walks of life, resulting into extraordinary outcomes.

Bid farewell to the hazardous and expensive chemical treatment, as we at OSE safeguard the environment, reduce your operating costs, conserve water and reduce energy consumption through Electro Coagulation, a technology widely used by power plants, refineries, industrial manufacturers, food producers and processors, hotels, malls, agriculture and other industries, to name a few.

This process is done by applying current to the electrolytic cell plates causing trace amounts of the plate material to be dissolved into the water. The action is similar to adding separation chemicals (polymers) to a chemical treatment system but much less expensive.

Coagulation As previously defined, the electrical current and trace dissolved metals from the electrolytic cell plates, causing the suspended matter to come together, forming larger particles. Flotation – During the reaction in the cell housing, oxygen bubbles are formed and attached to the coagulated matter, causing it to rise to the surface in the separation tank where it is removed and transferred to the sludge holding tank. The air bubble separates from the separated contaminant allowing it to sink to the bottom of the sludge holding tank where it stays until it is properly disposed off.

Current is applied to the electrolytic cell plates causing trace amounts of the plate material to be dissolved into the water. The action is similar to adding separation chemicals (polymers) to a chemical treatment system but much less expensive.

current and trace dissolved metals from the electrolytic cell plates, causing the suspended matter to come together, forming larger particles. Flotation – During the reaction in the cell housing, oxygen bubbles are formed and attached to the coagulated matter, causing it to rise to the surface in the separation tank where it is removed and transferred to the sludge holding tank. The air bubble separates from the separated contaminant allowing it to sink to the bottom of the sludge holding tank where it stays until it is properly disposed off.

Special Features of the Electro Coagulation Process Plant:

- Chemical Free, Non Biological
- Skid Mountain Modular in Construction
- Start Stop at user own will and user friendly
- Custom Designed based on the Volume of waste water
- Easily Expendable
- Can be Retrofitted in the existing facility
- Small Foot Print
- Very Law Operating Cost
- Less requirement of civil construction
- Simple & Easy to operate and maintain
- Sludge production can be 30-70% LESS voluminous compared to chemical processes
- Non-selective process on a wide variety of contaminants

Function of Electro Coagulation Process Removes:

- Organic
- Suspended Solids
- Turbidity
- Algae
- Odour
- Fat, Oil and Grease
- Heavy Metals
- Colour & Disinfects water

Advantages of Electro Coagulation Process:

- Removal of High Contaminant in the waste water
- Save Energy & Chemicals
- Far less Skill require in Operating & Maintenance
- Noiseless Operation
- Low Capital, Operating & Maintenance Cost
- Colour Removal
- BOD Removal
- COD Removal

Parameters	Inlet	Before Tertiary Treatmen	ntPost Tertiary Treatment
BOD Mg/L	250-300	<50	<20
COD Mg/L	400-500	<150	<100
TSS Mg/L	150	<10	<1
Oil & Grease	<20	<3	Nil

Electro coagulation (EC) Base Sewage Treatment Plant Process Flow:

- **Step 1:** Lifting of raw sewage from equalization tank / collection tank through Pump and sending it to Electro Coagulation (EC) reaction chamber
- **Step 2:** Aluminium Cell base EC reactor applied control electrical field in to the raw sewage water and Current is applied to the electrolytic cell plates causing trace amounts of the plate material to be dissolved into the water. Electrical current and trace dissolved metals from the electrolytic cell plates, cause suspended matter to come together, forming larger particles.
- Step 3: After EC reactor process, water along with suspended matter will go to ozonation tank where adequate quantity of ozone will be deposing in to the Ozone tank for the purposes of disinfection (primary use) and also decontamination or remediation. Ozone is a very strong oxidant and virucide. Ozone is more effective than chlorine in destroying viruses and bacteria. The ozonation process utilizes a short contact time (approximately 10 to 30 minutes). There are no harmful residuals that need to be removed after ozonation because ozone decomposes rapidly. After ozonation, there is no re-growth of microorganisms, except for those protected by the particulates in the Ozonation stream. Ozonation elevates the dissolved oxygen (DO) concentration of the effluent. The increase in DO can eliminate the need for re-aeration and also raise the level of DO in the receiving stream. Not Require any aeration. Remove heavy bacteria load in water. Remove contamination in water.
- **Step 4:** After the ozonation process, water will be transferred to Sludge separation tank / tube settler. The air bubble separates from the separated contaminant allowing it to sink to the bottom of the sludge holding tank where it stays until it is properly disposed of through sludge filter / bag filter.
- **Step 5:** After separation of sludge, treated water send to IMT (Inter Mediate Tank) where treated water will have vey negligible amount TSS, will be lifted through pump & send it to Carbon filter for final polishing of water.
- Step 6: After Carbon Filter, treated water will be collected to collection tank for further line of action.

Qualitative Comparision of STP's Commonly used in India with OSE's EC System : Waste water treatment System ABR : Anaerobic Suffled Reactor (Multi- Baffled Reactor (Multi- Baffled Septic Tanks) Activated Sludge Aerated Reactor Biofilm Reactor SBR : Sequential Batch Reactor Bio Reactor MBR : Membrane Bio Reactor Bio Reactor 1 Bar Screen Bar Screen Bar Screen Bar Screen

FOG Removal

Equilization, Filling and Mechanical Mixing

Reaction with Strong Aeration for 60-90 min batches

settling / Clarifying followed by decantation

Collection and Tartiary Treatment by ozone / chlorination

> SBR : Sequential Batch Reactor

Greatly Reduce Retention time

Main Plant has

small foot print

Greaywater can be managed concurrently

No Real problem

with Flies & odour if used correctly

SBR : Sequential Batch Reactor

Requires constant Electricity

High Sludge generation rates due to rapid shifts from

Aerobic environment to

anaerobic/anoxic environment

Require 40 -70 Mg per liter Alkalinity

Fed-Batch Process: lack

of water can damage the processing in aerobic environment

Requires a variable aeration system , preferrably with multipal blowers

Sludge requires special treatment

SBR : Sequential Batch Reactor

Generally require hydraulic retention time to of 14-16 hours to FOG Removal

Equilization

Aerated Digestion with dewatering

Collection and Tartiary Treatment

MBR : Membrane Bio Reactor

No Need for Settling / decantation, filters do the work of settlers

water quality is very good , resulting in reduced Tertiary treatments

Increased sludge retention time (15 days)allow for better digestions

Smallest foot print of all plants

Greaywater can be managed concurrently

High Reduction of Organic

No Real problem with Flies & odour if used correctly

MBR : Membrane Bio Reactor

Requires constant Electricity

Most Expensive System

High Operation Cost

Limited operational life of filters (biomembranes)

Large buildup of sludge if bacteria are accidentally killed

> MBR : Membra Bio Reactor

Generally require hydraulic retention time to of 6 hours to process the water. However, concentrated sludge left behind may require upto 7 days to digest

10

FOG Removal

Equilization

Electro Coagulation with primary oxidation

Secondary Oxidation

Filteration / Settling /

clarifying followe by decantation

OSE Electro Coagulatior base waste water treatment system

Lowest Hydraulic retention time

Lowest foot print / comparable to MBR

Resistant to hydrulic shock

Easy to Maintain,

locally available materials

Easy to Modify & Upgrade

High Reduction of Organic

No Real problem with Flies & odour if used correctly

Moderate Capital cost, Low

operating cost, depending on comparable to MBBR

Treat waste water on demand i.e. No water-system is shutdown & is restarted immediately without lag time

NOT dependent on

Biological or Environmental factors

Average 3 HP connected Load for 10000 liters per

hours flow rate

Can be Skid Mountain & made portable

Requires constant Electricity

Generates 3-4 % wet sludge of waste water

through put

No require any coagulation Aids to speed up the reaction

Limites operational life

of electrode , requires timely replacement of Electrode

FOG Removal

Equilization

Reaction with Aeration +

settling / Clarifying followed by decantation

Collection and Tartiary Treatment by ozone / chlorination

MBBR : Moving Bed Biofilm Reactor

Compact Design

Limited Expension

possible with increase in Ring quantities

Single Pass process No sludge recycling

No MLSS's required

Greaywater can be managed concurrently

High Reduction

of Organic

No Real problem with Flies & odour if used correctly

MBBR : Moving Bed Biofilm Reactor

Requires constant Electricity

Large sludge generation due to low SRT's

Longer sludge settling time , requires higer floculation aids

Difficult to maintain as no

bacterial redosing is done to maintain system

MBBR : Moving Bed Biofilm Reactor

Generally require hydraulic retention time to of 16 hours to process the water

6

State / Flow of Treatment	

2

2

3

5

6

8

9

10

11

12

2

4

5

6

rint Required Scale of 1 - 10 1 = small 10 = large

Capital Cost Scale of 1 -10 1 = Low 10 = High Operating Cost Scale of 1 -10 1 = Low 10 = High FOG Removal

Anaerobic digestion with seperation and settlement in Primary tank. FOG removal at First & Second Baffle

Anaerobic digestion with seperation and settlement in Secondary tank.

Filteration

Collection and Tartiary Treatment by ozone / chlorination

Resistant to organic and hydraulic shock loads

No Electrical Energy Require

Greaywater can be managed concurrently

Can be built & repaired with locally available material

Long Service Life

No Real problem

with Flies & odour if

used correctly

High Reduction of Organic

Moderate Capital cost, Low

operating cost, depending on emptying cycles

Increased Sludge Retention time (SRT 90 days) allows for better digestion

Difficult to destablize

once activated

Required costant source of water . Minimum 10%

of operational load is required per day

Effluent from reactor must

be filterd prior to further

tertiary treatment

Low reduction of bacteria thus requires tertiary treatment to remove

pathogens e.g. chlorination or ozonation

Generally require hydraulic retention time to of 24 hours to

ABR : Anaerobic Baffled Reactor - Baffled Septic Tanks) FOG Removal

Equilization

Reaction with

Strong Aeration

settling / Clarifying followed by decantation

Collection and Tartiary Treatment by ozone / chlorination

> Activated Sludge Aerated Reactor

Resistant to organic and hydraulic shock loads

Greavwater can be

managed concurrently

Can be built & repaired with locally available material

High Reduction of Organic

Activated Sludge Acrated Reactor

Requires constant Electricity

Large foot print

Low reduction of bacteria

, thus requires tertiary treatment to remove

pathogens e.g. chlorination or ozonation

Generally require hydraulic retention time to of 36-48 hours to process the water

8

