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The presence of various forms of heavy metals (HMs) (e.g., Cu, Cd, Pb, Zn, Cr, Ni, As, Co, Hg, Fe, Mn, Sb,
and Ce) in water bodies and sediment has been increasing due to industrial and agricultural runoff. HM
removal in nature is highly stochastic, nonlinear, nonstationary, and redundant. Over the last two de-
cades, the implementation of artificial intelligence (AI) models for HM removal has been massively
conducted. The divergence in the selection of predictors, target variables, the optimization, normaliza-
tion of the algorithm, function, and architecture of Al models are time-consuming processes, which limit
the optimal use of such models for HM removal simulation. The selection of sustainable, cost-efficient,
and user-friendly treatment techniques that have minimal reverse impact on the ecosystem is
immensely challenging. The focus of the established researches is to find an optimal Al models for
specific removal techniques. Predictors and target variables can be sorted using several techniques, and
the selection of algorithm, function, and architecture based on individual treatment techniques have
been coherently ordered and argued. In this review, each element of the predictive models and their
corresponding treatment processes, including its pros and cons, are discussed thoroughly. The perfor-
mance matrices are also discussed in accordance with the behavior of each model. Moreover, multiple
perspectives that can enlighten interested multi-domain scientists and scholars, such as Al model de-
velopers, data scientists, wastewater treatment researchers, and environmental policymakers, on the
actual status of the models’ progression are summarized. A comprehensive gap and assessments are also
conducted to provide an insightful vision on this topic. Finally, several research directions, which could
bridge the gap in the same domain are proposed and recommended on the basis of the identified
research limitations.

© 2019 Elsevier Ltd. All rights reserved.
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1. Introduction

As reported by the World Health Organization (WHO), the entire
ecosystem and human health are threatened by serious exposure to
heavy metals (HMs) (Enochs et al., 1994; Jaishankar et al., 2014;
Jarup, 2003). The serious point is that the majority of the popular
HMs reported with increasing trends in water bodies except Pb and
Zn within 1970—2017 periods (Li et al., 2019). Recently, most HMs,
such as Cr, Mn, Co, Ni, As, and Cd, in water bodies have been re-
ported to have exceeded the permissible limits set by the WHO and
United States Environmental Protection Agency (USEPA); the sta-
tistics of popular HM concentration in surface water bodies are
listed in Table 1 (Kumar et al., 2019). These data reveal the point of
attraction by esteemed researchers who contribute to research on
HM removal techniques. Environmental science and engineering
researchers work tirelessly to minimize the load of popular HMs
that are released in the ecosystem by various industries, such as
agriculture, textile, mining, pharmaceutics, and food processing
(Hymavathi and Prabhakar, 2017; Kumar et al., 2019; Sharma, 2014;
Viessman et al., 1998). In the last two decades, various treatment
techniques have been developed to remove HMs from water and
wastewater; these techniques are categorized in Fig. 1. HM removal
is expensive and laborious. In addition, the procedure requires
skilled supervision and is time consuming. Various studies on the
optimization and simulation of HM prediction and removal have
been increasingly conducted over the last two decades to overcome
these issues (Fig. 2).

Various artificial intelligence models, such as neural network,
logic, regression, and hybrid models have been developed to un-
derstand the uncertain nonlinear pattern of HM removal using
different treatment techniques. Moreover, these models have been
compared with various conventional models, such as mathemat-
ical, isotherm, statistical, empirical, and physical models. These
classical tools must determine a target for all groups of input

variables to model and optimize contamination removal tech-
niques; therefore, the target may vary, but remaining variables
must remain constant at a time (Singh et al, 2010). These
mentioned works increase the cost, time, and tedious laboratory
work while implementing the HM removal process (Tak et al.,
2015). Hence, it opens the door of soft computing (SC) aid. Fig. 3
illustrates that artificial neural network (ANN) has been the pre-
dominant model in maximum time owing to the fact that it is a new
soft computing intervention that aids HM removal techniques. Al
models are not limited to HM removal prediction; these models can
also be wused for thermal and process engineering
(Shanmugaprakash et al., 2018). The main challenges in building
such models are the number of datasets and optimizing process
prior to model building, weight minimization, and bias in the se-
lection of an appropriate optimization algorithm, which has a
massive effect on the performance of predictive models (Guyon and
Elisseeff, 2003; Wu et al, 2008). Model construction requires
expertise to understand the stochastic behavior of data and the
nature of the experimental process of HM removal and achieve
reliable performance. Furthermore, the selection of training, vali-
dation, and testing tools for Al models are complicated (Tan, 2018).

Predictive models can potentially reduce the burden on envi-
ronmental science and engineering in terms of cost, workforce,
space requirement, and time consumption. Al models do not have a
precise formula to understand architecture and algorithm; such a
formula could facilitate the selection of variables (samples) (Jang
et al., 1997). Hence, those can be solved in several ways, such as
trial and error, which starts with a simple network to a complex one
until the prediction value does not correspond to or near that of the
experimental data. A solution can be achieved by observing the
problem behavior and selecting an appropriate Al model architec-
ture (Anupam et al., 2014).

Various HMs are released into water bodies by different in-
dustries (Barman et al., 2000; Sharma and Agarwal, 2009). Some

Table 1
The concentration of different HMs (ug/L) existed in the surface water bodies (statistical analysis), (Kumar et al., 2019).
Cr Mn Fe Co Ni Cu Zn As Ccd Hg

Minimum 0.001 0.15 0.001 0.06 0.001 0.00067 0.01 0.22 0.003 0.007
Maximum 21800 77000 63500 42970 38100 27400 54000 86100 13700 8
Mean 413.27 2562.15 1654.05 3994.82 945.86 537.87 723.11 3981.78 180.88 1.01
Standard Deviation 128.24 747.74 541.75 135.24 191.84 138.71 213.10 145.96 62.80 0.54
Coefficient of variation 478.71 432.87 322,94 292.32 669.54 500.72 579.3 440.66 614.25 168.34
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Fig. 1. Classification tree of Treatment Techniques of Heavy Metal removal.
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Fig. 2. Year versus number of papers on HMs removal and prediction by Al models.

are highly toxic to the ecosystem and human health; how HMs
cause human body intoxication is discussed in Engwa et al. (2019).
Common HMs, such as Cr, Ni, As, and Cd, have been reported to
possess a high risk for cancer (Kumar et al., 2019), thus attracting
considerable attention from researchers led the priority of HMs
selection by these valued works indicated in Fig. 4. Nonlinearity is
observed in the development of various Al models, their optimi-
zation approaches, the selection of different algorithms and types
of functions to build the appropriate Al models, for which several
researchers conducted the works on the complex behavior of HMs
removal process by different treatment techniques (Fig. 5). Select-
ing appropriate optimization and simulation algorithms according
to the experimental design leads to the optimal performance of the
model and has the highest agreement with actual experimental
data.

Research on HM simulation using Al models has progressed
remarkably. However, to the best knowledge of the authors, this
study is the first to review novelty works, such as the critical
analysis and exploratory data analysis (EDA) of different variables;
the normalization, optimization, algorithms, functions, and archi-
tecture of different Al models for simulation; and prediction of
various HM removal techniques. Some reviewed research works are

based on either HM removal techniques without the incorporation
of Al modeling intervention (Fu and Wang, 2011; Ngah and
Hanafiah, 2008) or water treatment techniques with a limited
number of HMs, along with nutrients and persistent organic
pollutant removal with a few number of Al models, such as ANN
(e.g., backpropagation (BP), multilayer perceptron (MLP), radial
basis function (RBF), particle swarm optimization (PSO), genetic
algorithm (GA)), boosted regression tree (BRT), response surface
methodology (RSM), and self-organizing map (SOM) (Fan et al,,
2018). However, Fu and Wang (2011) reported various HM
removal techniques without introducing Al models; these tech-
niques required expensive instruments and skilled supervision and
was time consuming. Furthermore, Fan et al. (2018) reviewed only
11 published works based on HM removal; thus, other major toxic
HMs, such as Cu, Zn, Ni, and Hg were not covered. However, they
reviewed the fundamental of heavy metal removal process and
advantages of Al tools. The lack of review papers on the evaluation
of Al models for HM removal prediction has led to the collective
preparation of the current review. Total number of 152 esteemed
manuscripts are explored, based on types of toxic HMs removal,
considerable range of explanation for Al models for each target in
terms of accuracy, critical assessment reported in scientifically
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coherently. All papers included in this review are those indexed in
ISI and Scopus only; conference proceedings are excluded.

The advances in HM removal modeling and simulation achieved
through numerous Al models have largely outperformed conven-
tional models with respect to performance and increased the
number of associated research, resulting in remarkable in-
vestigations since the early 2000 (Fig. 2). Reviews on Al modeling
for HM removal are insufficient; hence, researchers are always
interested in studies on reliable architectures, suitable algorithms,
and various EDA process and functions for training the appropriate
model for specific data/variables of HM treatment techniques.

To achieve the best performance of the model, all factors or the
synergistic effect of HM remediation process for its modeling
design must be friendly resemble according to the optimization of
the input data for maximizing the target (output) and prediction
value accurately. Various factors, such as different EDA processes,
data optimization and normalization, number of hidden layers,

number of neurons in the hidden layers, type of training algorithm,
type of transfer functions, initial weights, and number of iterations
of the training process (epoch), must be understood to achieve
maximum accuracy. Different algorithms, including the
Levenberg—Marquardt (LM), BP, MLP, and evolutionary algorithm
(EA), are available; however, the best algorithm as per the charac-
teristics of the dataset and the architecture of the Al model must be
selected to produce a model that best fits the target.

This review research aims to provide a comprehensive survey on
exhaustively categorized Al models and enumerate their advan-
tages and advanced application in HM removal techniques. In turn,
this assessment will inspire ideas for prospective research. This
comprehensive evaluation focuses on the black box, fuzzy logic,
kernel, evolutionary, and hybrid models of Al for the optimization
and prediction of HM removal through various treatment tech-
niques. Fig. 3 displays the implementations of different Al model
versions. Given the abundance of papers that introduce the main

Please cite this article as: Bhagat, S.K et al., Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art,
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concept of Al models, this review does not discuss the theoretical
and mathematical approaches of Al models but rather presents the
main ideas and cites several references for the readers to follow.
Details, including authors, years of publication, treatment tech-
niques, source of samples (HMs) for experiments, proposed pre-
dictive models, input—output variables, performance metrics (PM)
evaluation, and research findings, of the selected papers are tabu-
lated in Tables 2—6 according to the applied models. The process of
building Al models for HM removal including the proposed models,
algorithms, functions, merits, demerits and established arguments
based on similar target, similar experimental design, and similar
algorithm used to build the Al models are presented in Section 2.
The evaluation and assessment of various treatment techniques are
reported in Section 3 in which all HM removal treatment tech-
niques in line with sustainable adsorbents are summarized, along
with their affinity toward specific HM, user-friendliness, economy,
reverse impact on the ecosystem, simulation, the prediction pro-
duced during the elimination process, and their suitability for the
proposed model. The reviewed research assessments, evaluations,
and prospective research possibilities are presented in Section 4.
The trend of productive HM removal models, its development in
the past two decades, its pros and cons with the critical gap be-
tween the research, as well as the prospective possible work are
listed. Section 4 also describes the development of the treatment
techniques and the possible research direction that could
contribute important results. Section 5 contains the summary of
the manuscript and presents opportunities for prospective re-
searchers who want to contribute to the same field.

2. Applied soft computing models for HM simulation
2.1. Black box models (ANN, RSM, and MLR)

The black box model is not new to the engineering field but has
not been extensively explored for optimum use, especially in
environmental engineering. Black box explains independent and
dependent variables but not the processing between these vari-
ables. In the last two decades, black box models have been mostly
used as ANN, RSM, and multiple linear regression (MLR or MnLR or
MNLR). Here, 90 of the finest works are reviewed and reported.
Table 2 compares the types of treatment techniques for various
HMs, and the grouping and prediction of HMs with ANN, RSM,

ANN-RSM, and ANN-MLR models are reported in the next section.

The neural network was first proposed by McCulloh and Pitts in
1943 (McCulloh and Pitts, 1943). ANN is a mathematical and sta-
tistical model that attempts to mimic the human brain’s mecha-
nism. The process of learning and then memorizing the actual
relationship of the mechanism between the input/output and their
nonlinearity has attracted many researchers. ANN consists of three
layers, namely, the input, hidden, and output layers. These layers
comprise neurons, connectors, nodes, and learning algorithms that
must be trained to achieve maximum accuracy. Neurons and nodes
are the processing units where weights connecting the neurons of
different layers and organize the ANN model. The backpropagation
neural network (BPNN), feedforward back propagation neural
network (FFBP), Levenberg-Marquardt (LM), MLP, MLR, Multi-layer
perceptron (MLP), multivariable nonlinear regression (MNLR),
multiple nonlinear regression (MnLR), and the RBF training algo-
rithm have been used widely in HM removal modeling. In addition,
different training functions, such as Trainscg, Trainlm, Traingdm,
Traincgp, and Trainrp, and transfer functions, such as tangent sig-
moid (tansig), logsig, and purelin have been utilized. Transfer
functions are used to synthesize the neurons/model between the
input and hidden layers and the hidden and output layers. One or
more hidden layers can exist. The theoretical and mathematical
concepts of ANN are discussed in another paper (Demuth et al.,
2014). Approximately 57 papers on ANN for predicting several
HMs and their combinations using different treatment techniques
are reviewed in the following subsection.

2.1.1. ANN model for single HMs

A comparison of two results for Cu removal reveals that the ANN
model is effectively trained by either the LM (using the tansig and
purelin functions on the 11 neurons of the hidden layer and on the
output layer, respectively) or the RBF feedforward algorithm, as
reported by (Kabuba et al., 2014; Messikh et al., 2014), respectively.
Furthermore, Messikh et al. (2014) highlighted the profits of ANN
by establishing membrane stability through the optimization of the
best variable to obtain maximum accuracy.

Two studies on the simulation of sulphur removal capacity have
been reviewed. These studies applied the MLP and LM algorithms
to train the ANN model, depicting potential predictability with a
high determination of coefficient (R?), a low average absolute de-
viation (AAD) and root mean square error (RMSE) (Acharya et al.,

Please cite this article as: Bhagat, S.K et al., Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art,
application assessment and possible future research, Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2019.119473
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2006; Vasseghian et al., 2014). Furthermore, Oguz and Ersoy (2014)
and Oguz (2014) investigated Co(Il) and Fe(Ill) removal, respec-
tively. The first study used minimax algorithm normalization
techniques with seven variables in the BP and LM algorithms of the
ANN model. In the second study, the scale and shift factor
normalization techniques for input data, which were used to train
the hyperbolic tangent and the linear function of the LM algorithm
of the ANN model, were investigated. The LM algorithm exhibited
higher accuracy compared with the BP algorithm. However, Yildiz
(2017) proposed a BP algorithm for its simplicity and high
training capacity with a low mean square error (MSE) value, which
illustrated the potentiality of the Al model.

Esfandian et al. (2016) reported an inclusive comparative study
between a data-driven model (i.e.,, ANN) and traditional adsorption
isotherm models (i.e., Morris—Weber, Lagergren, and pseudo-
second order) for Hg(II) metal removal. Some of the variables were
fetched from theoretical models, such as the Langmuir, Freundlich,
Dubinin—Radushkevich, and Temkin models. ANN exhibited a
better predication capability compared with traditional models, but
the authors reported that this model requires further advancement
to elucidate the broad view of adsorption mechanism with
comprehensive analysis.

In 2011, two comprehensive studies were reported (Rahmanian
et al., 2011b; Turan et al., 2011a) to highlight the competence of the
different functions of ANN in removing Zn(Il). Both studies used a
different approach to design the ANN model as per their treatment
techniques and input data, and both reported that the LM-BP al-
gorithm is superior to resilient BP, gradient descent, gradient
descent with momentum BP, gradient descent with adaptive layer
recurrent (LR), BP, and adaptive LR-BP. However, they differ in
choosing the optimization and network design functions. The full
factorial design (FFD) and cubic spline curve fitting (CSCF) functions
were utilized by Turan et al. (2011a) to estimate the optimal values
for the variables reported, whereas FFD was utilized by (Rahmanian
et al., 2011) for optimization, and the logsig processing with the
hyperbolic tangent function was used to train the LM algorithm.

Five studies are presented for the same output, that is, the
removal of Cd(Il) ion (Ahmad et al., 2014; Ahmad and Haydar, 2016;
Nasr et al., 2015; Siva Kiran et al., 2017; Yurtsever et al., 2014). The
LM with the hyperbolic tansig function was reported to be the most
suitable (Ahmad et al., 2014). Meanwhile, Ahmad and Haydar
(2016) used different outputs, such as the breakthrough curves of
the column process and the coefficient of the Thomas and Yan
models, to achieve the best fittings of the proposed model. Multiple
regression was used to optimize the input data for the FANN_-
TRAIN_RPROP function for training, the FANN_ELLIOT for the hid-
den layer, and the FANN_SIGMOID_SYMMETRIC to build the ANN
model, to achieve high performance (Yurtsever et al., 2014). Nasr
et al. (2015) used an adaptive neural fuzzy interference (ANFIS)
model to evaluate the influence of input variables on output vari-
ables and then proposed an ANN model with a hyperbolic tangent
transfer function in the hidden layer to identify the pattern un-
derstanding and the linear transfer function at the output to match
with the actual data of the batch process. In 2017, Siva Kiran et al.,
used the Box—Behnken (BB) experimental design grouping with
ANN and the DIRECT algorithm to train the model for optimal
performance.

For As(III) removal, four studies reported that the BPNN trained
by the LM algorithm for the ANN model is popular as it adjusts the
weight and bias of the network with a high correlation coefficient
(R) and a low MSE (Altowayti et al., 2019; Giri et al., 2011;
Gnanasangeetha and SaralaThambavani, 2014; Mandal et al,
2014b). These studies used 60%—75% range of data for training
purposes. In the 60% case, normalization techniques were proposed
to minimize the effect of scaling along with sigmoid transfer

function from input and hidden layers, whereas all others used
tansig for the same, and purelin was used at output layer neurons by
all four studies.

Five studies on Cu(Il) ion removal are reviewed (Abdollahi et al.,
2019; Geyikgi et al., 2013; Oguz and Ersoy, 2010; Prakash et al,,
2008; Turan et al., 2011b). Prakash et al. (2008) used the BP
recurrent network (Elman) with three hidden layers of the ANN
model, whereas the LM-BP network with the hyperbolic tangent
function was reported as a potential model for predicting the same
output mentioned by (Oguz and Ersoy, 2010). A newly proposed
network (i.e., RBF) was compared against the LM-trained feedfor-
ward network in which the competency of RBF was high as re-
flected by the low MSE and high R%. Geyikci et al. (2013) applied the
LM algorithm to a feedforward MLP network using the tansig and
logsig functions at the hidden and output layers, respectively,
resulting in improved performance. Abdollahi et al. (2019) sug-
gested that GA could be used to optimize the grouping of input
variables to maximize the target. GA is a reliable data optimizer that
can enhance the accuracy of the feedforward BP network trained by
the LM algorithm for the same target.

Six thorough studies confirm the Pb(II) ion removal prediction
efficiency of different algorithms of the ANN model (Fiyadh et al.,
2017; Gomez-Gonzalez et al., 2016; Kardam et al., 2012; Singha
et al., 2015; Shojaeimehr et al., 2016; Yetilmezsoy and Demirel,
2008). Principal component analysis (PCA) was used to validate
the input data for the LM training algorithm of the BP network,
showing the lowest MSE value among the 11 different topologies
(i.e., FRCGBP, PCGBP, PCGBP, LMBP, SCGBP, BFGS, QNBP, OSSBP, BGD,
VLRBP, and BGDM), followed by the Broyden—-
Fletcher—Goldfarb—Shanno (BFGS) algorithm (Yetilmezsoy and
Demirel, 2008). Kardam et al. (2012) also reported the potential
of the same algorithm, as validated by sensitive analysis. Singha
et al. (2015) worked on three algorithms (i.e., BP, LM, and scale
conjugate gradient (SCG)) with different transfer functions at the
hidden layer to train the ANN model; they tested the BP algorithm
with a transfer function between 1 and 25 raised up to the highest
value of R and the lowest value of chi-square () to reveal the best
prediction model. Recently, Gomez-Gonzalez et al. (2016) con-
ducted an intensive research on optimization techniques (i.e., GA,
pattern search (PS), simulated annealing (SA), and the gradient-
based method) and predictive models (i.e., isotherm models, such
as Langmuir and Freundlich, and a data-driven model such as ANN).
They found that the PS method, which used the LM algorithm to
train the ANN model, is the best by ignoring the local minima and
accelerating the convergence for the feasible optimizing power. In
2016, another study also delivered LM-trained BP network, which
had optimal efficiency to produce the lowest MSE and mean rela-
tive error (MRE) values and the highest R? values (Shojaeimehr
et al., 2016). In 2017, an exhaustive comparative study was con-
ducted between two neural networks, namely, FFBP with three
hidden layers and LR with five hidden layers along with different
transfer functions, such as Trainbfg, Trainbr, Traincgb, Traincgp,
Traincgf, and Trainlm. The study was conducted to develop a design
for the best performance. The best evaluated values of PM were
found by utilizing the Trainbr function in the three-layered FFBP
neural network architecture (Fiyadh et al., 2017).

Seven exclusive work findings of Cr(VI) HM removal are pre-
sented in this section. Aber et al. (2009) and Asl et al. (2013) used a
multilayered FFENN trained by BP algorithm to achieve high accu-
racy. In the same year, Singha et al. (2013) established an ANN
model with BP and LM algorithms as the best model for the same
experimental design. Anupam et al. (2014) compared the resilient
and BFGS quasi-Newton backpropagation algorithm among six
possible algorithms, which adjusted their weight and bias easily
using the trainrp and poslin functions to design the best
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performance of the ANN model. Ramazanpour Esfahani et al. (2014)
applied trainscg and the training-and-test-approach to design a
common neural network of an ANN model. In another study, 1-30
neurons at a hidden layer of a feedforward BP network, which was
trained using LM-BP algorithm, was used by (Debnath et al., 2016).
They found that eight neurons were the best with the tansig and
purelin functions, which were adjusted to calculate the best pre-
diction performance. This year, Tiimer and Edebali (2019) estab-
lished five neurons at the hidden layer of the FF-BP neural network
model, which was trained by the trainlm and purelin functions to
achieve the highest accuracy of the model.

2.1.2. ANN model for the alliances of HMs

Laberge et al. (2000) used the MLP algorithm to train the ANN
model for the prediction of a mixture of Cu, Zn, and Cd from
municipal sludge. Fagundes-Klen et al. (2007) investigated indi-
vidual and binary mixtures of Cd and Zn ion biosorption. They
conducted a comparative study between traditional isotherm and
data-driven models, i.e, ANN, which showed improved
performance.

Kaminski et al. (2009) proposed the MLP network for the
adsorption of a single or mixture of three HMs (Cu(lIl), Zn(II), and
Cr(VI)). The proposed model showed potential predictability of one
ion, two ion groupings, and three ion mixtures at a time. After a
couple of years, Tomczak (2011) used EA to identify the adsorption
dynamics model, whereas MLP topology was used to describe a
sorption isotherm for the same arrangement of ions and experi-
mental design, as reported by (Kaminski et al., 2009).

In 2012, Dragoi et al., studied the competence of a clonal se-
lection neural network for the experimental data of a series of
simulations with high measurement errors to understand the
sorption process of Cd, Co, Ni, Hg, and Cu. In another study,
Tomczak and Kaminski (2012) used the LM training algorithm to
design an MLP-based ANN model for HM prediction (Cu(II), Zn(II),
Ni(II)). Researchers addressed seven different types of HM input
combinations and achieved an output with a high R? value and low
MSE (dm). The adsorption capacity of Cu(II), Zn(II), and Ni(II) ions
was exhibited chronologically (high to low).

Two intensive studies were conducted on same adsorbent, i.e.,
Romanian peat to adsorb Cd, Co, Ni, Hg, and Cu in one experiment;
and Pb instead of Cu in another (Gabriel D. Suditu et al., 2013;
Gabriel Dan Suditu et al., 2013). In the first experiment, they used
GA to optimize the variables during the sorption process and in
another treatment process. Modular neural networks were pro-
posed for data optimization. Both studies used the MLP algorithm
to train two hidden layers of the ANN network. The inverse
modeling concept was also suggested to achieve improved effi-
ciency of the ANN model.

Wilson et al. (2013) utilized the Bayesian regularization algo-
rithm to train a single-layer chemometric tool (ANN) to determine
the effect of various binary and tertiary combinations of HMs, and
the best removal sequence was Pb*™ > Cu®>* > Zn** > Cd** HMs
removal percentage with the best performance by the model.

Mendoza-Castillo et al. (2014) highlighted the advantages of the
ANN model by establishing the importance and consequence of
both sorbent and HM characteristics in addition to metal sorption
kinetics and isotherms. ANN was built with the BP algorithm to
evaluate the most relevant parameters of HM removal. The treat-
ment was administered using lignocellulosic sorbents (i.e., biomass
lignin content), concentration of acidic groups, metal molecular
weight, and hydration energy, which were distinguished among
other reviewed studies.

Reynel-Avila et al. (2014) proposed the Taguchi’'s experimental
design and an ANN model to analyze the variables of HM (i.e., Cd,
Ni, and Pb) removal prediction. The BP algorithm trained the MLP

network of the ANN model, and the weight and bias were adjusted
using the trial-and-error method. The ANN model exhibited a more
promising prediction ability compared with conventional isotherm
models, such as the Langmuir and non-modified Sips models.

Esmaeili and Aghababai Beni (2015) studied the potential to-
pology of an ANN with two hidden layers, which were trained by
the MLP algorithm for Ni and Co HM biosorption capacity. In
another study, Podder and Majumder (2016) evaluated the LM-BP
algorithm to optimize the neural network structure to be the best
fit for the variables of the As(Ill) and As(V) metal sorption
prediction.

Khandanlou et al. (2016) reported the highest efficiency of in-
cremental BP among quick propagation (QP), batch BP, GA, and LM
algorithms for ANN model training to minimize the RMSE value for
Pb and Cu ion removal prediction.

The biosorption prediction of Cd(Il), Pb(Il), and Ni(Il) was
elucidated with high accuracy using an LM-BP-trained algorithm of
ANN model (Varshney et al., 2016).

Early this year, changes in the selection of variables were
observed. Rossi et al. (2019) revealed in an intensive research on Cd
and Ce ions, which were used as plant physiological parameters,
and the ratio of v/m as an independent variable that these HMs
accumulate in different parts of a plant as dependent variables
(Table 2). The MLP algorithm was used to train the ANN model for
predicting the accumulation of Ce and Cd ions in different parts of
the plant; the model performed well.

In 2018 and 2019, two comprehensive studies in which output
parameters included a breakthrough curve, equilibrium concen-
trations, and the adsorption capacity of bone char, have been re-
ported; the adsorbent technique in these studies was used for the
binary, tertiary, and quaternary groupings of HMs (i.e., Cu—Zn and
Cd—Ni—Cu—Zn) (Hernandez-Hernandez et al., 2017; Mendoza-
Castillo et al., 2018). The forgoing studies applied the BP and
multilayer feedforward algorithms to train the ANN model; how-
ever, the later research utilized the BFGS optimization method to
lessen the objective functions (Mendoza-Castillo et al., 2018). These
output variables limit the efficiency and robustness of the ANN,
resulting in incorrect prediction due to high modeling error.

2.1.3. RSM model for single HMs and HM alliances

The RSM model, which comprises mathematical and statistical
approaches, was introduced by (Box and Wilson, 1951) and devel-
oped suitably toward HM experimental design by (Gifi, 1990; Ross
and Ross, 1988). In HM removal treatment techniques, RSM is
performed in three steps: 1) designing the experiment, 2) building
the model, and 3) estimating the effect of variables and response
within the range (Jain et al., 2011; Myers et al., 2016). The theo-
retical and mathematical concepts of RSM are presented in the
work of (Myers et al, 2016). RSM in HM removal techniques
demonstrate competency in terms of economy by optimizing the
experiments, thus achieving maximum response (Ashan et al.,
2017; Jain et al.,, 2011). In addition, RSM is utilized by researchers
for HM removal to determine the linearity, interaction, and
quadratic effects between the variables and the accuracy of the
model (Jain et al., 2011; Sabonian and Behnajady, 2014). The center
composite design (CCD), BB design (BBD), and fractional factorial
design of FFD algorithms have been used to construct the RSM
model.

The authors of this study have reviewed approximately 10
exclusive works based on the RSM model alone. The RSM model has
been used to optimize input variables to achieve the target. Four
works on Cu(ll) ion removal are reported (Cojocaru and
Zakrzewska-Trznadel, 2007; Kavosi Rakati et al., 2019; Ozer et al.,
2009; Xiarchos et al., 2008), whereas the others focused on Cr, Ni,
Cd, Pb, and Co (Cobas et al., 2014; Dil et al., 2017c; Esmaeili and
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Khoshnevisan, 2016; Gusain et al., 2016; Hymavathi and Prabhakar,
2017; Jain et al., 2011). In most of these works, the authors reported
that pH, initial concentration of HM, initial concentration of
adsorbent, molar ratio, weight ratio, and contact time against a
target of HM removal (in percentage) were found relevant to the
response. The RSM was designed using CCD, FFD, BBD, and MLR as
per their experimental design requirement. CCD was found to have
a good fitting with a quadratic surface model and could establish a
second-order response surface model and experimental process
optimization. This design was also ideal for sequential experi-
mentation along with reasonable input data to achieve the target
(Dil et al., 2017c; Hymavathi and Prabhakar, 2017; Kovalova et al.,
2012; Ozer et al., 2009). FFD was used for the ratio of the molar-
to- weight variable in place of the CCD to optimize the experi-
mental design process, whereas MLR was used to reduce the value
of the sum of the squares of the residual (Cojocaru and Zakrzewska-
Trznadel, 2007; Xiarchos et al., 2008). By contrast, three factorial BB
models were found suitable for the rotatable quadratic design and
could be executed freely (Gusain et al.,, 2016; Jain et al., 2011). The
BBD was used to predict Cr(VI) ion removal and optimized the CaCl,
pretreatment process to enhance the performance of the model
(Cobas et al., 2014). Analysis of variance (ANOVA) was performed to
validate the competence of the quadratic or factorial design model,
as revealed by different indicators, such as the f-value, p-value, R,
and R?. Indeed, the experimental designs can be positively modeled
as an advancement of the Al models to simulate HM removal
efficiency.

2.14. ANN and RSM model for the same treatment technique or
target

Nineteen papers are reviewed, and the ANN and RSM models
are compared in this section. In accordance with the reviewed
papers, this section is subcategorized as per the target, where ANN
shows superiority over the RSM model as per the following
reviewed exercises for each target variable.

i. Case of Cu(Il)

Bhatti et al. (2011) reported that the ANN-GA model demon-
strated a better prediction capability for Cu(Il) removal compared
with the quadratic model designed by the CCD of the RSM model.
Reportedly, ANN could more competently arrest the nonlinear
experimental data to evaluate the combined regression coefficient
for removal efficiency and energy consumption. Another work
showed that the CCD of RSM could potentially establish the single
and combined effect of various treatment techniques on Cu(Il)
removal efficiency. Optimized variables were obtained from the
CCD-trained RSM model and fed to the BP algorithm of the ANN,
which was constructed by the poslin function of the input-to-
hidden-layer modeling and the purelin function of the hidden-to-
output-layer modeling to achieve high accuracy (Ghosh et al.,
2013). In another study, the LM BP algorithm of the ANN model
trained with functions transig and purelin at the input-to-hidden
and hidden-to-output layers exhibited superiority over the RSM
model in terms of the fitting of variables for the maximum pre-
diction value. Here, RSM was utilized to display the linear effect of
variables and their interaction on the target effectively
(Shojaeimehr et al., 2014). A research reported that the CCD algo-
rithm of the RSM model outperforms the BBD- and FFD-designed
model with respect to the linear and interactive session between
the variables. The RSM also removed less effect variables and fed
them to the LM to design the ANN, which produced a prediction
value near the actual result (Podstawczyk et al., 2015). Meanwhile
(Blagojev et al., 2019; Uddin et al., 2018), applied the BBD algorithm
to train the RSM model for optimizing the variables to maximize

the response; they used the LM and GA algorithms to train the ANN
model to achieve the best prediction performance.

ii. Case of Cr(VI)

Krishna and Sree (2013) conducted a comparative study be-
tween ANN and RSM for Cr(VI) removal. BBD was used to design
RSM for variable optimization, and GA was used for the ANN model.
ANN demonstrated better competency in predicting the Cr(VI)
removal efficiency compared with the RSM model (Krishna and
Sree, 2013). In the same year, Cr(VI) ion prediction was studied
using the RSM and ANN models. The multilayer feedforward net-
work’s BP algorithm was used to build the ANN model, which
exhibited a better predictive model compared with the CCD-
trained RSM model, as indicated by the PM matrices
(Shanmugaprakash and Sivakumar, 2013). After one year, another
modified adsorbent (Table 2) was used to predict the same HM
using an ANN model that was trained by additional data obtained
from a proposed mathematical equation, which was linked with
the percentage removal and optimized input parameters of the
RSM model; the predicted value of the ANN model with the addi-
tional data from the mathematical equation was better than those
of the RSM and normal ANN models (Sabonian and Behnajady,
2014). In the following year, the quadratic equation from multiple
regressions was used to strengthen the CCD for less experimental
data. This study used the CCD of the RSM model for the input
variables to obtain the best yield. Moreover, a modified version of
CCD, that is, a face-centered central composite design, was used to
develop a link between the variables and the target. Along with the
traditional trend of a transfer function (tansig and purelin), the
gradient descent transfer function was used with momentum BP
(traingdm) to construct the ANN topology to obtain updated weight
and bias values according to the momentum. ANN displayed su-
periority over RSM in terms of predictive capability, as indicated by
the PM matrices (Mandal et al., 2015a). After two years, Ashan et al.
established the Cr(VI) ion prediction and removal percentage by
applying the ANN and RSM models; the performance evaluation
indicates that the simulation by the ANN model (in the case of RSM-
optimized data) was better than that of RSM and ANN optimization
and simulation (Ashan et al., 2017).

iii. Case of Pb(II)

In 2012, the CCD and LM/MLP algorithms were used for the RSM
and ANN model for Pb removal prediction; the LM training module
of the ANN was better than the MLP training module, as indicated
by the improved predictive fitting with real data. This training used
the tansig function at the hidden layer and the nonlinear function,
logsig, at the output layer. The ANN model performed better than
RSM in terms of prediction (Bingol et al., 2012). In another study,
the BBD algorithm was applied for the same target using the RSM
and ANN models; here, the ANN model used the MLP training
module and exhibited improved performance (Geyikgi et al., 2012).
Another study that combined the Pb(Il) and malachite green dye
removal processes exhibited the use of CCD to prepare the RSM
model for highlighting the best independent variables; the transig
and purelin transfer functions at the hidden and output layers of the
ANN model outperformed RSM'’s prediction ability (Dil et al.,
2017b).

iv. Case of As(Il and V)
Research on As(IIl) and As(V) sorbent on rice polish adsorbent

used CCD algorithm for the RSM model to evaluate the single and
combined effects of independent variables on responses. In the
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same experiment, the MLP network was used for the learning
techniques of the LM BP of the ANN model for prediction, which
exhibited a better performance compared with RSM (Ranjan et al.,
2011). Another study was performed to optimize the variables us-
ing the BBD of the RSM model for As(V) removal (phytoremediation
technique); here, multilayer feedforward neural networks (MLP)
and a BFGS algorithm were successfully used to develop an ANN
model, which produced a better prediction result compared with
the RSM (Titah et al., 2018).

v. Case of Ni(II)

Oladipo and Gazi (2014) proposed a hyperbolic tangent function
to construct a three-layered feedforward network of an ANN model
to optimize the weight and bias of the topology. The ANN was
evaluated in terms of the effect of various variables of the Ni(II)
metal removal process on the modified adsorbent, and then a
sequence of variables were reported as per their effect. In addition,
CCD was used to strengthen the RSM model for input parameter
optimization and maximize the breakthrough time and uptake
capacity of batch adsorption. The ANN and CCD matrices presented
a linear pattern with marginal irregularities from the actual line.

vi. Case of Cd—Co and azo dyes

A removal study based on a combination of HMs (i.e. Cd%>* and
Co®* ions) and azo dyes (i.e., methylene blue (MB) and crystal violet
(CV)) established that the CCD of RSM produces optimized data
with an improved understanding of the synergistic effect of vari-
ables against the output (Dil et al., 2017a). The LM algorithm of the
FFBP topology of ANN was used with the tansig and purelin transfer
functions to match the variables for the predictability of the
removal percentage. The ANN displayed a slightly better perfor-
mance compared with the RSM model (Dil et al., 2017a).

vii. Case of Zn(II)

Shanmugaprakash et al. (2018) recommended the LMBP
learning technique to train the MLP topology of an ANN and utilized
numerous optimized variables, which were gathered by the CCD of
RSM, to produce the best predictive value of the Zn(Il) removal
efficiency dataset.

2.1.5. ANN and MLR for the same treatment technique

Multivariate and linear regression analyses have been used
frequently in HM removal techniques since the study of (Yu et al.,
2001). MLR revealed the correlation between two or more
nonlinear variables (Ashrafi et al., 2019). In detail, the theoretical
and mathematical concepts of MLR can be drawn from previous
studies (Dunn and Clark, 1987; Myers and Myers, 1990) In this
section, various works are reported and reviewed to compare the
performance of the ANN and MLR models. Shandi et al. (2019) re-
ported that the LM algorithm was better than the BP algorithm in
designing an ANN model due to its powerful nonlinear mapping
capacity of Cu(Il) removal efficiency. By contrast, the twin loga-
rithm of the MnLR model was designed to assess the previous
experimental process. Both models show promising PMs (Table 2);
an ANN model was also used to conduct sensitivity analysis to
identify the variables’ relationship with the target, revealing that all
input variables have their own effect, whereas the initial concen-
tration of Cu(Il) has a maximum effect on the biosorption process
(Shandi et al., 2019).

In the adsorption of Pb(I) onto carboxylate-functionalized
walnut shells (CFWS) adsorbent was applied the three-layer feed-
forward ANN model, which was trained using the LM algorithm and

the transig function; here, ANN outperformed MLR. However, MLR
is well known for simplicity, transparency, and easy interpretability
in terms of determining the cause—effect relationship between
dependent and independent variables (Ashrafi et al., 2019). Both
models were used to optimize the variables for improved fitting
and produce a low prediction error. ANN has a marginally higher
prediction value and a better statistical quality compared with MLR.

The biosorption prediction of Ni(Il) and Co(Il) was studied using
two different models, namely, ANN and MNLR (Allahkarami et al.,
2017). The BP learning methods of ANN evaluated the weight
starting at the output layer and moving back through the hidden
layer of the network, whereas the trial-and-error method was used
to find the optimum number of hidden layers and neurons in each
layer. The model evaluators showed that the performance of ANN
was better than that of MNLR. The Ni(Il) removal prediction by both
models was better than their Co(II) removal prediction.

Three other works on the prediction of HM concentration in soil
due to mining and agricultural activities are reviewed. In 2002,
Kepler and Sommer reported from Spain field spectral measure-
ment and geochemical variables to build up the chemometric
experimental model using the ANN and MLR models. The feedfor-
ward network of ANN performed slightly better than the MLR
model in terms of all metal determination at once, unrestrictedly.
Soil remediation was achieved by removing the topsoil using heavy
machinery for the detection of nine HMs. Out of the nine HMs, six
(i.e., As, Fe, Hg, Pb, S, and Sb) were detected accurately by the MLR
and ANN models (Kemper and Sommer, 2002). In 2009, ANN and
MLR models were built using 13 properties of agricultural soil from
Germany and the solution phase as input and the sorption phase as
output. This experiment was conducted for nine HMs (i.e., Cd, Cr,
Cu, Mo, Ni, Pb, Sb, Tl, and Zn). The authors used the intelligent
problem solver (IPS) and two-fold cross-validation methods to
determine the lowest error of the network and avoid the overfitting
problem of ANN. However, no considerable difference was found
between these two models, except in the cases of Cr and Cu. ANN
and MLR are potential tools for sorption modeling; these models
increased detection efficiency when the topsoil data were divided
into subsoil data (Anagu et al., 2009). After two years, researchers
from Iran introduced the BPNN and general regression neural
network (GRNN) algorithms to the ANN and MLR models to predict
four HMs (i.e., Cu, Fe, Mn, and Zn) from acid mine drainage (AMD).
Surprisingly, GRNN, which is supervised, learns fast without cate-
gorization, and evaluates each output freely, showed better fitting
with three input data (ie., pH, SO4 and Mg?"), predicting the
concentration of four HMs more accurately than another model
(Rooki et al., 2011).

2.2. Fuzzy logic (TS, Mamdani, genetically generated fuzzy
knowledge bases (GGFKB), and fuzzy-based decision support system
(FDSS))

Since 1965, fuzzy logic (if—then rule) has been introduced to
various fields of science and engineering to solve multidimensional
problems (Zadeh, 1965). In environmental science, introducing a
fuzzy model to solve water HM problems is time consuming. The
main advantage of fuzzy logic over neural network is it avoids the
pattern between the investigational data and the feedback by using
a linguistic expression to present uncertainties (Mandal et al.,
2015b; Rebouh et al., 2015). Furthermore, fuzzy logic, with the
optimized input variable obtained by ANN, forms a new robust
model called ANFIS. ANFIS reduces time and facilitates detection by
simplifying the mathematical model for a system (Sonmez et al.,
2018). The theoretical and mathematical concepts of fuzzy logic
from basic to advance have been discussed in previous studies
(Brown, Martin and Harris, 1994; Jang et al., 1997; Nauck et al.,
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The summarized details (calibration approach, predictive models, input/output variables, performance metrics and research remark) of the reviewed researches on heavy
metal variables using the feasibility of ANN, RSM and MLR models over the period (2000—2020).

SI. References

Treatment Technique/source of heavy Proposed

Input/output variables

Performance Research finding

No. metal predictive indicators
models
1 Laberge et al. Bioleaching by Thiobacillus Neural several hydraulic retention MAD NN architect successfully with the best
(2000) ferrooxidans/Municipal sludge networks times(HRT), FeSO4_7H20 output of solubilization of these metals
(NN) concentrations, pH, oxydo-reduction with mean absolute deviations. HRT
potential and initial metal found sensitive to predict the
concentrations/metal (Cu, Zn and Cd) solubilization of these three metals.
solubilization percentages
2 Kemper and Removal of topsoil by heavy ANN, MLR Depth of soil for a different range, R, R?, SEP Out of nine heavy metals, six were
Sommer (2002) machinery/Mining accident in Spain Reflectance spectra of a soil/ perfectly suitable to both ANN and
Concentrations for As, Cd, Cu, Fe, Hg, MLR with a high-performance matrix.
Pb, S, Sb, and Zn The remaining three heavy metal (Cd,
Cu, Zn) did not show potential
attraction for these models.
3 Acharyaetal. Bio sorption by (Acidithiobacillus ANN Type of coal, initial pH, pulp density, MAD Very first-time Multi-layer perceptron

(2006)

4  Cojocaru and
Zakrzewska-
Trznadel (2007)

5 Fagundes-Klen
et al. (2007)

6 Prakash et al.
(2008)

7 Yetilmezsoy and
Demirel (2008)

8 Xiarchos et al.
(2008)

9 Aber et al. (2009)

10 Anagu et al. (2009)

11 Kaminski et al.

(2009)

ferrooxidans)/Three types of coal
(Assam, coal, Polish coal and Rajasthan
lignite)

Filtration by dead-end and cross-flow RSM
polymer assisted ultrafiltration
(PAUF)/Aqueous Solution

Bio sorption (Sargassum filipendula)] ~ ANN

synthetic solution

Bio sorption by sawdust of mango tree ANN
(Mangifera indica)/Aqueous Solution

Adsorption by Antep Pistachio (Pistacia ANN
Vera L.) shells/Aqueous solution

Filtration treatment by micellar- RSM
enhanced ultrafiltration (MEUF)/

Aqueous solutions
Electrocoagulation/synthetic and real ANN

wastewater from an electroplating
factory

sorption models/133 agricultural sites ANN, MLR
across Germany

Sorption on chitosan foamed ANN

structure/aqueous solution

particle size, residence time, media

composition and initial sulphur

content of coal/sulphur removal

percentage

feed concentration of polyacrylic acid, R?, adj R?
a ratio of polymer to copper and pH of

feed solution/removal of Cu(Il) ions

The equilibrium concentrations of the AAD,

fluid phase/equilibrium objective
concentrations of the bio sorbent for function
Cd and Zn

the initial ion concentration, pH, MSE

temperature and particle size/%
adsorption efficiency for the removal
of Cu (II)

adsorbent dosage, initial concentration MSE, R
of Pb(II) ions, initial pH, operating
temperature, and contact time/

Adsorption efficiency of Pb (II) ions

removal

Surfactant (SDS) concentration, pH and Fisher test
surfactant/metal (S/M) ratio/Rejection (F-test), R?
coefficient(%) of Cu removal

Current density (j), time of electrolysis R2, MSE
(tEC), initial concentration of Cr(VI)

and the concentration of electrolyte/

residual Cr(VI) concentration

(MLP) of ANN reported predicting Bio-
sorption (A. ferrooxidans) techniques
for sulphur removal

FFD of RSM used to optimize the
variables and predict the response
with a high value of determination of
coefficient adjusted by MLR. ANOVA
also performed to raise the quality of
the model and produce the R? value for
its prediction.

Adsorption (Langmuir —Freundlich)
isotherm was suited better for
equilibrium data of the binary system.
ANN was better efficient then
adsorption isotherms model to
estimate the equilibrium
concentration.

The researcher found the momentum-
training algorithm of back-
propagation recurrent of ANN as an
operative method in modeling,
estimation and prediction of the
biosorption process to remove the Cu
(I1) ion from aqueous solution.
Authors revealed that desorption
studies may be needed further. This
adsorbent is cheaper than membrane
filtration inline to renewal sources of
Antep Pistachio shells. ANN-
Levenberg-Marquardt algorithm
(LMA) performed well with predicting
the value of adsorption efficiency.
CCD and FFD of RSM utilized to
alleviate the process variables to
achieve maximum response and
confirmed with F-test, whereas, the
value of R? revealed the degree of
agreement between predicted
rejection coefficient (%) and
experimental one.

The iron anode was better than
aluminium one to removal chromium
ion due to Fe?* produced from the iron
anode and reduced to chromate ion
electrochemically. The authors found
the best R? value using ANN prediction
and Experimental data.

13 soil properties and solution phase RMSE, ME, EF ANN and MLR used to develop sorption

concentrations/sorbed phase
concentrations

Initial concentration Ci/amount of R?, MRE
adsorbed metal Cu*?, Zn*? and Cr*®

ions.

model as a function of 13 basic soil
properties. ANN worked effectively
when topsoil data divided into subsoil
data. Moreover, ANN showed a better
result than MLR in terms of EF.

All three metal ions assessed at
individual concentration level and as
well as in the combination of each
other for Langmuir-Freundlich
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SI. References Treatment Technique/source of heavy Proposed Input/output variables Performance Research finding
No. metal predictive indicators
models

equation not necessary for ANN. MLP
of ANN was best fitted between input
and output for the best result of
predication of removal of heavy
metals.

12 Ozer et al. (2009) Adsorption by green seaweed RSM Initial pH, temperature, initial Cu(ll)  R? CCD used to design the experimental
(Enteromorpha prolifera)/Aqueous ion concentration and biosorbent process to make better fitting for the
solution concentration/Cu(Il) ion removal RSM model to predict the Cu(ll)

percentage removal efficiency. RSM evaluated by
R? and scored high value.
13 Oguz and Ersoy Adsorption(Shells of Sunflower)/ ANN the treatment time (t), the RMSE The authors found the best variables of
(2010) aqueous solution concentration of initial Cu2*, the system behaviors for the

adsorbent dosage, pH, flow rate, bed adsorption process and simulated with
depth and particle size./Cu2* LM-BP algorithm of ANN model to
concentration as a function of reaction predict near actual values.
time

14 Bhatti et al. (2011) Electrocoagulation system [AI(IIl) ions ANN, RSM Cu concentration, pH, voltage and Combined CCD of RSM and ANN-GA showed
generated from sacrificial cathode]/ treatment time/Cu removal efficiency regression  advantage at their own stage such as
Synthetic wastewater and energy consumption coefficient, RSM assessed voltage and treatment

R?, MSE time as a positive correlation with
removal efficiency but the negative
effect on energy utilization. ANN was
more capable to arrest the nonlinear
data of experimental results with
combined regression coefficient for
removal efficiency and energy
consumption.

15 Jainetal (2011)  Biosorption by Helianthus annuus RSM the pH of the solution, initial Cr(VI) R BBD of RSM used to optimize the
flowers (SHC)/Aqueous solution concentration and adsorbent dose/ quadratic equation data and called

Cr(VI) adsorption timesaving technique by reducing the
number of experiments to optimizing
the variable input effectively.

16 Ranjanetal.(2011) Bioadsorption by rice polish/aqueous ANN, RSM pH, initial arsenic concentration, R? ANN and RSM models have used to
solution temperature, and biomass dose(for assess the predictability. ANN found

batch mode) and bed height, flow rate, better than RSM model in the line to a

and initial arsenic concentration (for limited number of experiments with

column mode)/uptake capacity of the accuracy, whereas, RSM reported

sorbent for As(IIl) and As(V) useful for interactions between
different components.

17 Girietal. (2011)  Biosorption by Bacillus cereus/Aqueous ANN The initial concentration of arsenic ARPE, R? Although, with the high value of the
solution (II1), biosorbent dosage, temperature degree of correlation estimated for

and contact time/As (III) sorption % ANN predictive tool of biosorption
efficiency. The authors recommended
that fast convergence proficiency
together with ANN might be tested
with experimental data and more
number of variables to exploit the
fundamental principle of biosorption.

18 Rahmanian et al.  Filtration treatment by micellar- ANN TMP, pH, Feed SDS concentration, S/M AARE ANN and FFD have designed for the

(2011b) enhanced ultrafiltration (MEUF)/ ratio, L/M ratio, Electrolyte prediction of permeate flux and
Aqueous solutions concentration, (Brij35/SDS) modal rejection of metal ion removal. These
ratio/permeate flux and rejection rate models showed dependable and
of metal (Zn) ion from wastewater truthfulness with AARE value.

19 Rooki et al. (2011) NA/amount of acid mine drainage ANN, MLR pH, SO4 and Mg?/heavy metals R Best ANN (BPNN and GRNN) and MLR

(AMD) concentrations (Cu, Fe, Mn and Zn) architecture have been set best on
correlation coefficients to predict the
heavy metals from AMD. GRNN found
a better model than others to predict
with more agreement to experimental
data.

20 Turan et al. Adsorption by Pumice of Soylu Mining ANN initial pH, adsorbent dosage, R? Radial basis function (RBF) established

(2011b) Industry/WW from Elektrosan temperature, and contact time/ as a feasible better than traditional
Elektrocopper Industry & Trade Co. maximum removal of Cu(ll) ions network type for the prediction of %
Ltd. in Samsun, adsorption efficiency for the removal
Turkey. of Cu (II) ions from industrial leachate
by pumice.

21 Turanetal.(2011a) hazelnut shells (Corylus pontica) asa ANN Initial pH, adsorbent dosage, contact ~R?, RMSE The authors found LM-BP of ANN is the
biosorbent/Industrial waste of time, and temperature/Zn (II) significant tool to predict the removal
Elektrosan Electrocopper Industry in removable capacity (Rem%). capacity of hazelnut shells with cost-
Samsun, Turkey effective and less computational time.

22 Tomczak (2011)  sorption on chitosan ANN Equilibrium concentration, Ce;, of a R?, MRE ANN used with MLP and EA algorithm

foamed structure/aqueous solution

given component (for one component,

to the proposed model for suitability of
(continued on next page)
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binary and ternary systems)/amount of Chitosan for sorption process in order
metal (Cu(Il), Zn(II) and Cr(II)) ions of highest concentration for zinc ions,
adsorbed higher for nickel ions and lowest
concentration for copper ions,
respectively. EA showed better
performance of prediction.
23 Bingol et al. (2012) Biosorption by black cumin (Nigella ~ ANN, RSM pH, biosorbent mass and temperature/ R?, RMSE Predictability of ANN revealed better
sativa)/Aqueous solution sorbed amount of lead than RSM based on the validation data
set. The study presented a high level of
non-linear relation ANN model with
experimental results.
24 Dra;goi et al. Biosorption by peat bed (lignin, ANN the metal type described by its R?, MSE Clonal Selection Neural Networks (CS-
(2012) cellulose and humic substance) electronegativity of Cd, Co, Ni, Hg and NN) has been used to develop an
Cu), sorbent concentration, optimum neural network model,
the pH of the initial solution, initial which estimates the efficiency of the
concentration of the solution sorption process depending on
containing metal ions, solution working conditions.
temperature, and contact time/
sorption process
25 Geyikgi et al. red mud of Seydis ehir ANN, RSM Dosage, time and pH/Removal of Lead MSE, RMSE, Box—Behnken design (BBD) used for
(2012) Aluminium Plant, Konya, Turkey/ R?, ADD both ANN and RSM model to optimize
industrial sludge leachate of an the input for better yield of the target.
accumulators production plant, Turkey RMSE, R, and ADD were used to
compare ANN and RSM. Better
statistical parameters made by ANN
than RSM.
26 Kardam et al. Biosorption by Nanocellulose Fibers ~ ANN Biomass doses, Metal concentration, MSE Complex sorption process has been
(2012) (rice straw)/synthetic solution volume, contact time and pH/Pb % assessed and optimized by ANN which
sorption efficiency used Levenberg—Marquardt algorithm
(LMA) of BP algorithms to train the
model with a minimum mean squared
error (MSE).
27 Tomczak and Adsorption by Clinoptilolite/Aqueous ANN 7 different combination of input in R% m MLP of ANN model addressed to
Kaminski (2012)  solution terms of heavy metals/adsorption predict the heavy metal of either single
capacity of Cu(II), Zn(II), Ni(II) or in-group.
28 Asletal (2013)  Adsorption by zeolite (ZFA) of raw fly ANN initial pH, adsorbent dosage, contact R?, MSE Sensitivity analysis showed that MSE
ash time and temperature/percentage values are inversely proportional with
(RFA)/Aqueous solution adsorption a number of variables used in the ANN
the efficiency of Cr(VI) ions model. Therefore, the researchers open
a new area of research to understand
the dynamic behavior of the process
with other phenomenal in detail with
advance ANN model.
29 Gabriel Dan Suditu Biosorbent by Romanian peat (from  ANN Metal electronegativity, a dose of peat, MSE, r ANN-GA proved the reliability and
et al. (2013) Poiana Stampei)/Aqueous solution pH, temperature, initial concentration efficiency based on performance and
of the pollutant in solution and contact presented in general form. GA of ANN
time/efficiency of heavy metal(Cd, Co, used to avoid the overfitting of the
Ni, Hg, Cu) ions removal model.
30 Gabriel D. Suditu  Biosorbent by Romanian peat (from  ANN Metal nature (electronegativity), MSE, E,, 1 For each metal, the best among entire
et al. (2013) Poiana Stampei)/Aqueous solution sorbent dose, pH, temperature, initial database has been achieved by MNN,
concentration of metal ion, contact used for training and testing of ANN,
time/amount of retained metal(Cd, Co, and found a better performance of the
Hg, Ni, Pb) ion per unit mass of sorbent model with MLP algorithm with
simple structure and faster training.
Inverse modeling also used to
determine the leader parameters to
pre-established values of adsorbed
metal ion per unit mass of peat.
31 Geyikgi et al. Adsorption by single-wall carbon ANN initial concentration, PH, time and R? Authors found LM learning algorithm
(2013) nanotubes (SWCNTs)/Aqueous adsorbent dosage/percentage of Cu to train the feedforward MLP network
solution ions removal model superior overall previous
adsorption isotherm model to design
the experiment well and to predict the
metal removal percentage with high
determination coefficient.
32 Ghosh et al. (2013) Biosorption by orange peel/aqueous ANN, RSM pH, copper concentration and contact R ANN and RSM reported unique in their
solution time/removal (%) of copper respective place. CCD of RSM
optimized the best process variables,
whereas, error backpropagation of
ANN imitated the best model to predict
with better correlation value.
33 Krishna and Sree  Adsorption by ragi husk powder/ ANN, RSM MSE, R? Using GA to design ANN produced a

(2013)

synthetic wastewater

better result for the prediction of metal
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pH, adsorbent dosage and initial than BBD for RSM. Nevertheless, BBD
chromium(VI) concentration/ model optimizes the experimental
percentage of metal removal data better.

34 Shanmugaprakash Defatted Pongamia oil cake (DPOC)/  ANN, RSM pH, initial Cr(VI) ion concentration, R?, RMSE, The first time, Inline to the non-linear
and Sivakumar synthetic aqueous solution temperature and dosage in the case of AAD behavior of adsorption operating
(2013) the batch mode and bed height, flow parameters of Cu (VI) removal of both

rate and initial Cr(VI) concentration in batch and continuous process, have
the case of continuous mode/ been studied with ANN model and
biosorption of Cr(VI) in case of both found precisely efficient to predict
mode Cu(VI) removal over RSM model.

35 Singhaetal. (2013) Biosorption by eight ANN Initial pH, initial Cr(VI) ion MSE, R, AARE BP and LM both algorithms were suited
adsorbent(sawdust of teakwood, neem concentration, adsorbent dosages, and to producing the best ANN model for
bark, rice straw, rice bran, rice husk, contact time/percentage removal of Cr (VI) removal percentage
hyacinth toots, neem leaves, and Cr(VI) predictability with a high value of R
coconut shell)/Aqueous solution and low value of AARE.

36 Wilson et al. simultaneous and automated ANN Furrier and breakthrough coefficient/ RMSE, R2, Binary and tertiary combination of

(2013) Biosorption by potentiometric sensor removal of Cu2+, Cd2+, Zn2+, Pb2+ Intercept and metal as an input selected. The best
array [vegetable wastes based on flow- and Ca2+ slop removal sequence of
injection potentiometry (FIP) and Pb%*>Cu?*>Zn?*>Cd?* reported by
electronic tongue detection (ET)]/ this new integrated biosorption
Aqueous solution approach with the more reliable
predictable model of ANN.

37 Ahmad et al. Biosorption by immobilized Bacillus ~ ANN PH, biosorbent dosage, contact time, R? With the highest value of

(2014) subtilis bead (IBSB)/Aqueous solution initial cadmium ions concentration determination coefficient, ANN found
and temperature/biosorption capacity best simulation model for batch
for cadmium ions biosorption process of IBSB.

38 Anupam et al. Physisorption by powdered activated ANN Adsorbent dose, wastewater pH, initial R?, MSE Resilient and BFGS quasi-Newton
(2014) carbon/simulated wastewater pollutant concentration and contact backpropagation algorithm of ANN

time/adsorption efficiency and used to predict adsorption capacity

adsorption capacity for adsorptive and trainrp and poslin of ANN used to

removal of Cr(VI) predict adsorption efficiency and
showed the best result as per their
evaluation matrix.

39 Cobas et al. (2014) Biosorption by F. vesiculosus/Aqueous RSM pH, biomass dosage and CaCl,/Cr(VI) R? Three factorial Box-Behnken based
solution removal percentage design of RSM revealed a high degree

of predictability and robustness.
Authors also investigated Freundlich
isotherm suited well.

40 Gnanasangeetha  Adsorption by zinc oxide nanoparticle ANN the initial concentration of As>*, RMSE, R? LM of ANN found greater than BP along
and entrenched on activated silica (ZnO- adsorbent dosage, with performance matrix result.
SaralaThambavani NPs-AS) which extracted of contact time, pH and agitation/As
(2014) Azadirachta indica/Aqueous solution sorption capacity

41 Kabuba et al. Adsorption by Clinoptilolite/Aqueous Neural pH, temperature, initial concentration/ MSE, R? BP of a neural network trained the
(2014) solution network  Cu(ll) ion removal model to an obtained high degree of

prediction ability of the model.

42 Mandal et al. Adsorption by hybrid material of ANN adsorbent dose, pH, contact time, R?, ARPE, Backpropagation algorithm of ANN
(2014b) cerium hydroxylamine hydrochloride agitation speed, initial concentration MSE was trustworthy to predict the

(Ce-HAHCI)/Aqueous solution and temperature/removal % efficiency adsorption efficiency of As ions with
of As(IIl) difference variables input.

43 Mendoza-Castillo Biosorption by lignocellulosic wastes, ANN Sorbent characteristics, Metal ion R, MSE, MRE The nonlinear relationship between
et al. (2014) namely jacaranda fruit, plum kernels properties, Sorbent characteristics, the sorbent features and the sorbate

and nutshell/Aqueous solution Metal ion properties/removal of Pb(II), characteristics established and
Cd(II), Ni(II) and Zn(II) predicted the sorption of HMs by ANN,
successfully.

44 Messikh et al. Adsorption by emulsion liquid ANN emulsification time, ultrasonic power, R?, RMSE ANN build-up by RBF feed-forward
(2014) membrane process/Aqueous solution stirring speed, sulfuric acid algorithm to set the stability of

concentration, extractant membrane and extraction of copper.
concentration, surfactant

concentration, internal phase/organic

phase volume ratio, emulsion/external

phase volume ratio, copper

concentration, contact time, extractant

concentration, stirring speed/stability

of membrane and Cu removal

efficiency

45 Oguz and Ersoy Biosorption by sunflower biomass/ ANN The treatment time, initial Co(1II) R?, SDR, All performance indicators illustrated

(2014) Aqueous solution concentration, biosorbent dosage, pH, MAR, RMSE well to predict the Co (II) removal by
bed depth and particle size, flow rate/ sunflower as an adsorbent by proposed
Co(II) concentration as a function of LM of the ANN model. Minimax-
reaction time algorithm normalized the input and
output variables.
46 ANN, RSM R?

(continued on next page)
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Oladipo and Gazi  Adsorption by Alginate-based Dosage, contact time, initial CCD of RSM depicted to optimize the
(2014) composite bead (ABCB)/aqueous concentration and pH/uptake capacity input parameters on breakthrough
solution and removal percent of (Ni) time and removal % of nickel. ANN and
CCD are reliable in matching with the
result of batch experimental values.

47 Ramazanpour Sorption by sepiolite-stabilized zero- ANN pH of aqueous solution, S-ZVIN R?, MSE This study approved the quantitative
Esfahani et al. valent iron nanoparticles (S-ZVIN)/ concentration, Initial Cr(VI) role of each input variables of the
(2014) Aqueous solution concentration and Chloride ion removal efficiency of Cr(VI) with

concertation/removal efficiency(%) of almost a unit determination coefficient
Cr(VI) of ANN.
48 Reynel-Avila et al. Adsorption onto chicken feathers ANN The initial concentration of Pb(II), R?, MSE Pb(II) illustrated better adsorption
(2014) using Taguchi's experimental design// Cd(11), Ni(II), pH/removal of HMs among ternary aqueous solution by
Aqueous solution using Taguchi’s experimental design
and ANN model for modeling the
sorption of HMs.

49 Sabonian and Photocatalytic remediation by ANN, RSM The initial concentration of Cr(VI), the R%, MSE Optimized data set and a result of the

Behnajady (2014) nanoparticles of TiO,—P25/Aqueous dosage of TiO2 catalyst, light proposed mathematical equation
solution irradiation time, and pH/percentage of obtained from RSM used to train the
Cr(VI) reduction ANN model to predict the percentage
error reduction of Cr (VI) adsorption
and exhibited low MSE and high R?
value.

50 Shojaeimehr et al. Adsorbent by light expanded clay ANN, RSM initial pH, temperature, initial Cu?* R ANN raised up with better correlation

(2014) aggregate (LECA)/Aqueous solution concentration, and sorbent dosage/ coefficient and a tool for Cu2+ removal
removal efficiency of Cu?* efficiency by using BP and CCF
algorithm than RSM.

51 Vasseghian et al.  Flotation and leaching methods/ ANN the floor, the collector, shaking, pH, =~ R% RMSE LM found the accurate model to
(2014) bitumen of mines (Kermanshah/Iran) solid weight percent and particle size/ predict the sulphur removal through

percentages of ash and sulphur flotation and leaching methods.
removal

52 Yurtsever et al. Biosorption by valonia tannin FANN Operating temperature, initial pH, R?, MSE ELLIOT and SIGMOID SYMMETRIC
(2014) resin(VTR)/Aqueous solution initial Cd(II) ion concertation, particle function at the hidden and output

size, agitation rate and contact time/ layer of ANN used, respectively. Input

Cd(II) ions adsorption uptake at variables data set have been optimized

equilibrium conditions with multiple regression analysis for
four-layer (2-hidden) of ANN model
prediction

53 Esfandian et al. Biosorption by brown algae ANN Initial concentration of mercury, pH, RZ, MSE ANN model agreed more with
(2016) (Sargassum bevanom)/Aqueous contact time, sorbent dose/Hg(II) experimental data as it is exhibited by

solution removal efficiency MSE and R? value. ANN also compared
with adsorption isotherm models
(Morris—Weber, Lagergren, and
pseudo-second-order. To estimate
sorption capacity, the sorption data
were imported in the Langmuir,
Freundlich, Dubinin—Radushkevich (D
—R) and Temkin models) and showed
superior to them.

54 Esmaeili and Biosorption (Sargassum glaucescens ANN Bias, pH, Dosage, Time/Biosorption R? The efficiency of S. glaucescens ANP
Aghababai Beni (brown algae)/effluent of zinc ingot efficiency of Ni and Co (alginate nanoparticles) was set more
(2015) plant in Shahrekord for nickel ions removal than cobalt and

established the best variables to raise
efficiency by ANN.

55 Mandal et al. Adsorption by cerium oxide RSM, ANN Adsorbent dose, contact time, pH, R?, MSE, RSM used to optimize the response by
(2015a) polyaniline (CeO»/PANI) composite/ temperature and initial concentration/ RMSE, MAPE, adjusting the different variables,

synthetic solution removal percentage of Cr(vI) AARE, where, ANN showed better
Relative predictability of removal efficiency of
error (%) metal ions with a low score of MSE and
AARE and high value of R?.
56 Nasr et al. (2015) Biosorption by rice straw/Stock ANN, Biosorbent dose, pH and initial Cd(Il) R ANFIS evaluated the influence of the
solution ANFIS concentration at two-level (low and variables on output, whereas, ANN
high)/Cd(1I) removal predicts the Cd(II) ion removal
efficiency with a high value of R.
57 Podstawczyk et al. Biosorption by flax meal (oil extraction ANN, RSM metal ions concentration, biosorbent R? MSE, F-  Central composite design (CCD)
(2015) with supercritical CO,.)/Aqueous dosage and solution pH/Biosorption  value, p- projected the best utility for modeling
solution efficiency of Cu (II) ion value and optimization among Box

—Behnken design (BBD) and full
factorial design (FFD). ANN showed
more accuracy in line to dependent
variables than RSM in the prediction of
Cu?* removal

58 Singha et al. (2015) ANN MSE, R, Authors reported statistical analysis

AARE, o, %2 that ANN model with BP algorithm (1
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Biosorption by rice wastes, hyacinth initial pH, initial Pb(II) ion and 25 transfer function in a single
roots, neem leaves and coconut shells/ concentration, adsorbent dosages, hidden layer) produced top
aqueous solution and contact time/removal of Pb(II) ions predictableness of the percentage
removal.
59 Yildiz (2017) Adsorption by peanut shell/Aqueous ANN Sorbent amount, initial concentration R2, MSE ANN was suitable for the prediction as
solution and initial pH/Zn(II) adsorption low MSE exhibited, where, Freundlich
capacity showed better fitting than the Temkin
isotherm model.

60 Ahmad and Haydar Biosorption by immobilized Bacillus ~ ANN The influent concentration of metal ~ R%, RMSE The best breakthrough curves and
(2016) subtilis bead (IBSB)/stock solution ions, bed depth of column, flow rate, parameters of the empirical model of

column internal diameter and the the biosorption process were caught
mass of the biosorbent filled inside the by the ANN model, which modeled
column/Thomas model constants i.e. with LM algorithm.

kry and qo, or Yan model constants i.e.

a and q, for Cd ion

61 Debnath et al. Adsorption by CaFe;04 magnetic ANN pH, adsorbent dosage, initial Cr(VI) ion R?, MSE ANN model predicted the target and be
(2016) nanoparticles (CaF-MNPs)/aqueous concentration and contact time/ quite agreeable with experimental

solutions percentage removal of Cr(VI) data as shown by a low value of MSE
and high value of R%.

62 Esmaeili and Alginate-coated chitosan nanoparticles RSM The contact time, pH, biomass dose, ~ R? RSM model used to optimize the
Khoshnevisan (Alg—CS—NPs)/aqueous solutions and initial Ni ion concentration/ process for achieving the best removal
(2016) Removal efficiency of Ni efficiency of Ni ion, and ANOVA used to

determine the adequacy and
significance of the model with R?.

63 Gomez-Gonzalez  Biosorption by coffee grounds(CG)] ~ ANN Different pH values/adsorption R Despite being less capable in the

et al. (2016) aqueous solutions capacity of lead ions physical interpretation of the isotherm
models, ANN stands up the best
predictive model among Langmuir and
Freundlich isotherm model. The pH
was 5 for best removal %.

64 Gusainetal.(2016) Adsorption by nanocrystalline RSM Initial concentration, pH, Adsorbent R, R? Adsorption process optimized by BBD

zirconia/Aqueous solution dose/% removal of Cd ions of RSM model. Best-input variables
reported achieving the maximum
output as removal (%) Cd ion.
Predictive model acted with a high
value of correlation coefficient.

65 Khandanlou et al. Sorption by nanocomposites of rice  ~ ANN Initial ion concentration, adsorbent ~ RMSE, R? Five algorithm named as quick
(2016) straw and Fe30,4 nanoparticles/ dosage, removal time/removal propagation (QP), Batch Back

Aqueous solution efficiency of Pb(II) and Cu(II) ions Propagation (BBP), Incremental Back
Propagation (IBP), genetic algorithm
(GA) and Levenberg-Marquardt (LM)
algorithms have been used to
topologies the ANN and IBP of ANN
stood up to be the best predictive
model for removal efficiency of Pb and
Cu ions with the highest R? and lowest
RMSE indicators.

66 Podder and Biosorption (Phycoremediation of ANN Initial pH, Inoculum size (%v/v), R%, MSE, AE, LM of ANN found suitable to predict

Majumder (2016) Botryococcus braunii)/synthetic contact time, initial concentration/%  SD the % removal of ions by the
wastewater removal of both As (IIl) and As(V) ions phycoremediation process; though,
the authors reported, it needs more
data to comprise the analysis of the
principle of removal of ions by the
same technique.

67 Shojaeimehr et al. Biosorption by Gundelia tournefortii/ ~ ANN Temperature, initial Pb ion R?, MSE, MRE ANN model designed with LM-BP

(2016) Synthetic wastewater concentration, initial pH, biosorbent algorithm and found the best suited
dosage, and contact time/Pb(II) predictive model for Pb ion prediction
adsorption capacity along with a high value of R?, and low
value of MSE and MRE.

68 Varshney et al. Biosorption by itaconic acid grafted =~ ANN Different metal concentration, varied R?, MSE LM-BP algorithm used to train the ANN
(2016) poly (vinyl) alcohol encapsulated wok biosorbent dose, varied contact time/ model for best prediction ability with

pulp (IA-g-PVA-en-WP)/stack solution Sorption efficiency of Cd(II), Pb(II), high R? value. Sensitivity analysis
Ni(II) reduced the time of modeling run by
removing low sensitivity values of
input channels.

69 Allahkarami et al. Biosorption (by carboxymethyl ANN, PH, contact time, initial concentration R?, MSE Both ANN and MNLR predictive model

(2017) chitosan bounded Fe304 MNLR of metal ions and adsorbent mass/ showed perfectly with their
nanoparticles)/Aqueous solution amount adsorbed of Ni(II) and Co(II) performance matrix, though ANN
performed with more in terms of
accuracy.

70 Ashan et al. (2017) Adsorption by NiO nanoparticles/ ANN, RSM R?, MSE Optimized data has been used to

Aqueous solution

evaluate the performance of ANN
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Initial Cr(VI) concertation, amount of predictability and found the
adsorbent, contact time and pH/Cr(VI) performance indicator near one.
adsorption %

71 Dil et al. (2017a)  Adsorption by nano-rods (ZnO-NRs-  ANN, RSM Initial heavy metal (Cd?>*, Co?*)and  R? RMSE RSM used to optimize the best
AC)/stock solution azo dyes concentrations [Methylene parameters of the adsorption process

Blue (MB) and Crystal violet (CV)], to evaluate the maximum adsorption

adsorbent dosage and ultrasonic time/ efficiency whereas, ANN trained with

adsorption efficiency of heavy metals LM algorithm picked up a better

(Cd2+, Co2+ ions) and azo dyes (MB predictive model to use these input

and CV) variables to estimate future absorption
capacity.

72 Dil et al. (2017b)  Absorption by Copper oxide ANN, RSM Pb2+ ions and MG concentration, pH, R?, MSE ANN and RSM have been used to
nanoparticle-loaded activated carbon amount of adsorbent and ultrasound, determine the optimum input variable
(CuO-NP-AC)/aqueous solutions irradiation time/removal of Pb®>* and to achieve the best output dependent

Malachite Green (MG) variable and ANN found slightly better
with R2 value than RSM.

73 Diletal. (2017c)  Adsorption by modified genetic RSM Initial Pb>* ion concentration, pH, R CCD of RSM used to optimize the data
megnatic nanomaterials/Aqueous adsorbent mass and ultrasound time/ and CCD evaluated by ANOVA and
solution percentage removal of Pb?* calculated the value of R to calculate

the prediction value of lead removal
efficiency and experimental value by
this adsorbent.

74 Fiyadh et al. (2017) Adsorption by deep eutectic solvents ANN PH, adsorbent dosage, contact time  R?, MSE, The FFBP and layer recurrent used to
functionalized CNT/Aqueous solution and Pb?* initial concentration/removal RMSE, train the ANN. FFBP used further to set

percentage of Pb(II) RRMSE, the design as R? and MSE showed
MAPE better than layer recurrent result.

75 Hernandez- Adsorption by reverse stratified bone ANN Metal properties (molecular weight, Modeling ANN model is challenging for binary
Hernandez et al.  char/Aqueous solution electronegativity and ionic radius), error % adsorption process with maximum
(2017) feed concentration, feed flow, modeling error in the breakthrough

stratified bed length and the operating zone of C/Cp patterns.
time of the adsorption column/ratio

(Ct,i/CO,i) of the breakthrough curve of

copper and zinc

76 Hymavathi and Biosorption by Cocos nucifera L. leaf ~ RSM The initial concentration of Co(ll), pH, R? CCD of RSM utilized to predict the

Prabhakar (2017) powder/Stock solution adsorbent dosage, and temperature/ response and evaluated an R? by
percentage adsorption of Co ANOVA. Value of R? was near one,
which showed excellent performance
of the model.

77 Oguz (2014) Sorption by ignimbrite/aqueous ANN pH, the sorption time, the R?, RMSE Sensitive analysis performed to assess

solution concentration of initial Fe3+, bed the vital input variables of ANN on
depth, flow rate and particle size and/ removal efficiency. In addition, ANN
Fe3* concentration as a function of used to predict removal efficiency.
reaction time for Removal of Fe3* ion

78 Siva Kiran et al. Bio sorption by three species of ANN, BB Initial concentration Cd, biosorbent R BB modeled for optimization of input
(2017) Spirulina (Arthrospira) maxima, dosage, agitation speed and pH/% variables for best output. Coupled

Spirulina (Arthospira) indica and adsorption of Cd BB_ANN model found a predictive

Spirulina (Arthospira) Platensis/ model with high correlation coefficient

Aqueous solution for low concentration of Cd ion
removal process.

79 Mendoza-Castillo Adsorption by bone-char/Aqueous ANN the initial metal concentrations of four R, Modelling This study revealed that the output
et al. (2018) solution metals (Cd2+, Ni2+, Cu2+ and Zn2+ error (ei, %) variable of a binary, tertiary and

ions)/equilibrium concentrations and quaternary mixture of heavy metals

adsorption capacity (qe;) play a key role to design the best
predictive model. Equilibrium
concentration used as output variable
may cause incorrect prediction,
whereas, designed adsorption capacity
(qe,i) — based ANN model is capable
and flexible to predict precisely even in
multi-component composition
behavior of bone char.

80 Shanmugaprakash Biosorption by Pongamia (Pongamia ~ ANN, RSM For Batch mode: pH, temperature, the R, AAD, MPE, Uptake capacity of Zn (II) ion found
et al. (2018) Pinnata) oil cake/ dosage of biosorbent and For RMSE, SEP, R better in batch mode than a

Continuous mode: flowrate, initial continuous mode of biosorption

concentration of Zn(1I) ion, bed height/ process. ANN predictability stands up

Zn(Il) ion uptake rate better than RSM for Zn (II) ion uptake
rate along with higher performance
indicators.

81 Titah et al. (2018) Phytoremediation by Ludwigi ANN, RSM As concentration in the soil, sampling R?, AAD, Multilayer feedforward neural

octovalvis/solution of As(V) salt

day, and aeration rate/total As removal RMSE,
from soil (%) efficiency

adjusted R?

networks and a BFGS algorithm used to
construct ANN biases and weight with
the highest R? and lowest AAD and
RMSE value than RSM model.
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SI. References Treatment Technique/source of heavy Proposed Input/output variables Performance Research finding
No. metal predictive indicators
models
However, both models are good for
optimization of the variables.

82 Uddin et al. (2018) batch adsorption experiments of ANN, RSM pH, initial Cu2+ concentration, contact MSE BBD of RSM was implemented to

pottery sludge/synthetic solution time, temperature/removal percentage optimize the mathematical model of
of Cu2+ isotherm and LM of ANN sought well to
deep prediction values.

83 Abdulhussein and Sodium Dodecyl Sulfate (SDS) as a ANN contact time, surfactant concentration, RMSE LM used to architect the ANN model

Alwared (2019) surface-active agent and sunflower flow rate, initial copper concentration for predicting the Cu ions and
seed husk/Synthetic solution and sunflower seed husk evidenced its capacity for this aim. The
dosage/removal efficiency of Cu (II) in scholars confirmed the significant
% correlation of the pH and time-dosage
variables on the flotation process and
sorptive floatation process,
respectively by sensitive analysis.

84 Altowayti et al. Removal by indigenous Bacillus ANN contact time, temperature, pH, As (III) R%, MSE The Langmuir equation revealed better

(2019) thuringiensis strain (WS3) from concentrations and adsorbent dosages/ fitting than the Freundlich model for
arsenic-laden tailing dam/aqueous As (III) adsorption ANN and revealed by a good degree of
solution correlation (R?) between the actual

and predicted removal of As (III).

85 Ashrafi et al. Adsorption by carboxylate- ANN, MLR pH, initial concentration, adsorbent ~ MSE, MAE, R> ANN produced better statistical quality

(2019) functionalized walnut shell (CFWS)/ dosage and contact time/removal and lower prediction error than MLR.
Aqueous solution percentage of Pb?* Moreover, the initial concentration of

Pb ion picked up with the highest
significance for the removal
percentage of Pb ion by both models.

86 Blagojev et al. sugar beet ANN, RSM initial concentrations of Cu(Il) ions, the R?, SSer Authors found the best predictive

(2019) shreds/aqueous solution adsorbent dose and pH of the inlet critical time from ANN-GA while pH
solution/critical time (best capacity of was a significant parameter as a result
adsorbent showed until this time) of a BBD of RSM model. They proposed

a parallel sigmoidal model (PS) based
on the asymmetric shape of the
breakthrough curves.

87 Kavosi Rakati et al. Polyaniline modified chitosan RSM PH, contact time, initial concentration R? CCD of RSM used to evaluate the best

(2019) embedded with (ZnO/Fe304) of copper, range of input variables to maximize
nanocomposites/Aqueous solution temperature, and adsorbent dosage/ the adsorption capacity. Quadratic

removal of Cu (II) models used to describe the
relationship between response and
variables precisely.

88 Rossi et al. (2019) Phytofiltration by Brassica Napas/ ANN Leaf fresh weight, root fresh weight, MSE, R Physiological parameters of the plant
Aqueous solution of Engineered leaf dry weight, root dry weight, net have been used as input variables to
nanoparticles (CeO,) and HM (Cd) photosynthesis rate at day 60, stomatal training the ANN model prediction for

conductance at day 60, and F,/F, at Ce and Cd accumulation in root and

day 60/percentage of Cd and Ce in root leaf of a plant. ANN model displayed

and leaf of Brassica Napas slightly better prediction for Cd than
Ce by performance indicators such as
higher R and lower MSE value,
respectively.

89 Shandietal.(2018) Removal achieved by raw ANN, pH, contact time, adsorbent dosage, ~ R?, MSE The authors used the MnLR and ANN to
Gundelia tournefortii (GT)/Aqueous MnLR initial concentration and temperature/ optimization and prediction, Both
solution Biosorption capacity of Cu (II) models showed potential to do it,

Sensitive analysis conducted with ANN
and established the initial Cu (II)
concentration; which was the most
effective parameters against others on
biosorption capacity.

90 Tiimer and Edebali Sorption by commercial resins ANN contact time, adsorbent dosage, pH,  R? MSE The feasibility of the ANN models was

(2019)

(Amberjet 1200H and Diaion CR11)/
Aqueous solution

and initial concentration/removal
efficiency of Cr (III)

examined for the resin removal of
trivalent Cr and demonstrated a
reliable intelligent predictive model.

1997). In general, BP or the combination of BP and least squares
assessment is applied to HM parameter prediction. Several fuzzy
models, such as Takagi—Sugeno (TS), Mamdani, and GGFKB, have
been applied to HM removal studies as listed in Table 3 (a and b).

Elektorowicz and Qasaimeh (2004) demonstrated a hybrid
model (i.e., GGFKB), that is more reliable and user-friendly than the
FDSS in terms of predicting mercury metal adsorption.

Fuzzy set theory has been investigated for HM removal tech-
niques in terms of optimization and prediction. Singh et al. (2006)

compared the potentials of the ANFIS and ANN models for Cd
removal prediction. A total of 20 neurons were designed at the
hidden layer of the FFBP network of the ANN model. Fuzzy inter-
ference used the optimized membership function, fuzzy logic op-
erators, and if—then rules to input variables and improve target
yielding. The ANFIS model outperformed the ANN model in terms
of accuracy by holding the irregularities and uncertainties of vari-
ables against target.

The findings of three comprehensive research works based on
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Table 3a
The summarized details (calibration approach, predictive models, input/output variables, performance metrics and research remark) of the reviewed researches on heavy
metal variables using the feasibility of fuzzy logic models over the period (2000—2020).

S.K. Bhagat et al. / Journal of Cleaner Production xxx (XXXx) XXx

SI. References  Treatment Technique/source Proposed predictive Input/output variables Performance Research finding

No. of heavy metal models indicators

1 Elektorowicz Biosorption by wetland plant Fuzzy logic model  pH, temperature, initial mercury NA GA used to optimize the data to train the
and (floating and rooted)/ concentration and chloride fuzzy-based decision support system
Qasaimeh concentration/mercury uptake efficiency (FDSS) to catch up with the highest
(2004) degree of predictability; moreover, they

did not use any performance indicator.

2 Singhetal. Adsorption by hematite ore/ ANN, Hybrid Neuro- Initial Cd (II) concentration, agitation R?, % error  Hybrid Neuro-Fuzzy model reported the

(2006) Aqueous Solution Fuzzy Model, ANFIS rate, temperature, pH/Adsorption best model to predict the adsorption
process of Cd(II) ion with the lowest
value of error than ANFIS and single-
layered feed-forwarded of ANN,
respectively.

3 (Rahmanian Filtration treatment by Fuzzy logic model  SDS feed concentration (Csps), surfactant ARE, AARE, BBD used to attain the maximizing Pb
et al, 2011a) micellar-enhanced to a metal molar ratio (S/M ratio), pH/  SD removal by MEUF process and then after

ultrafiltration (MEUF)/ permeate flux and rejection factor for Pb the Fuzzy logic model designed to predict

Aqueous solutions removal the permeate flux and rejection factor for
Pb removal and illustrated maximum
agreed of correlation with experimental
data.

4 ( Rahmanian Filtration treatment by Fuzzy logic model ~ SDS concentration, pH and surfactant/ ~ R?, AARE, SD, FFD optimized variables applied to the
etal,2011) micellar-enhanced metal ratio/permeate flux and rejection CE ANFIS model to predict the permeate flux

ultrafiltration (MEUF)/ for Z(1I) and rejection for Zn (II). This model
Aqueous solutions showed a high degree of acceptance with
actual data.

5 Rahmanian Filtration treatment by ANN, RSM, Adaptive Initial surfactant concentration, R?, MSE Authors proposed RSM to assess the
et al. (2012) Micellar-enhanced neuro-fuzzy Surfactant to Metal ratio and Feed process but ANN and ANFIS model found

ultrafiltration (MEUF)/ inference system solution pH/permeate flux and the reliable to predict the MEUF method
Synthetic wastewater (ANFIS) rejection rate of Pb>* removal efficiency. performance. Moreover, ANFIS showed
better correlations than ANN.

6 Bingol et al.  Adsorption by Date palm MLR, ANFIS pH, biosorbent mass and temperature/ R?, RMSE Polynomial regression method i.e. ANFIS
(2013) (Phoenix dactylifera L.) seeds/ Cu(II) removal found better to predict Cu(Il) ion removal

Aqueous solution onto Date palm than MLR by using high
R? and low RMSE value.

7 Turan and Adsorption by ANFIS, 23 full Initial pH, adsorbent dosage, and contact R? ANFIS express a high degree of
Ozgonenel leachate(Clinoptilolite)/ factorial design time/Cu(Il) ion removal predictability for Cu (II) removal than a
(2013) effluent of ETI Copper Works traditional mathematical model.

in Samsun, Turkey

8 Jafari and Biosorption by Vibrio ANN, ANFIS, RSM pH, temperature, R? SD, SSE, CCD of RSM used to assess the impact of

Jafari (2014) parahaemolyticus (PG02)/ and initial mercury(Hg?*) concentration/ MSE, RMSE  operational parameters and found better

Aqueous solution mercury removal percentage than ANN and ANFIS. Where LM of ANN
showed up than Gaussian MF of ANFIS as
revealed by R? value. Though, Authors
suggested all three models have well
fitted the experimental data and can be
applied for prediction of the mercury
metal.

9 Mandal et al. Adsorption by zirconium ANFIS Operational parameters (Dose, pH, time, R, AARE, MSE ANFIS optimized the variables for a
(2015b) oxide ethylenediamine temperature, initial concentration) and maximum response as well as predict the

adipate (ZEDA)/Stock solution experimental design parameters (bed output with a significant score of R and
height and flow rate)/efficiency of As(IlI) AARE.
and Cr(VI) removal
10 Rebouh et al. Biosorption by wheat straw/ ANFIS, Langmuir, Initial metal ion concentration, Initial pH, R?, RMSE ANFIS exhibited better result over
(2015) Aqueous solution Freundlich and temperature, contact time, straw particle conventional method such as Langmuir,
Redlich-Peterson size(granulometry), and biosorbent freundlich, redlich-peterson inline to
chemical treatment/percentage removal interpolated, extrapolated data, fast
of Cu(Il) and Cr(VI) result and accuracy obtained by
indicators.

11 Rondaetal. Biosorption by untreated and ANFIS, full factorial The concentration of the chemical agent, R? ANFIS outperformed FFD method to

(2015) chemically treated olive design method pH and initial lead concentration/ predict the metal adsorption. Treated OS
stone(OS) obtained from oil Biosorption capacity of Pb(II) showed better adsorption capacity than
extraction plant, Jaén Spain/ the untreated one.
Stock solution

12 Javadian et al. Adsorption by activated Fuzzy-logic-based  pH, contact time (min), dosage (g) and R? Proposed Madami type of fuzzy logic

(2017) carbon nanocomposite(NiO/ model initial concentration of Pb (II)/adsorption model by means of 26 if-then rules found
Rosa Canina-L seeds)/aqueous of Pb (II) a suitable realistic prediction for removal
solution performance of sorbent.

13 Janaetal. Filtration treatment by RSM_BBD (Box- SDS feed concentration, surfactant to the R This study produced all systematic

(2018)

micellar-enhanced
ultrafiltration (MEUF)/
aqueous solutions

Behnken design)
and an interval
type-2 fuzzy logic
controller (IT2FLC)

metal molar ratio (S/M ratio) and
solution pH/lead removal

integrated approach for modeling
process condition and their prediction so
that MEUF process can be enhanced.
Although, after all, rigorous study,
authors suggested to have quantitative
and its financial effects with more
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Table 3a (continued )

Sl. References

Treatment Technique/source Proposed predictive Input/output variables

Performance Research finding

No. of heavy metal models indicators
accurate tools such as interpretative
structural modeling method, Simulink,
fuzzy artificial neural network, to
evaluate the scale of efficiency.

13 Lashkenari  Adsorption by y-Fe,0s3/ ANFIS, two Treatment time, initial concentration of R, RMSE, Prediction of effluent-to-influent

et al. (2018) Polyrhodanine
nanocomposite

empirical models

methods)

Zn ion, column height, flow rate/effluent- MAE, N—S
(Thomas and Yoon to-influent concentration of Zn (C/C,)

concentration of Zn (C/C,) reported with
ANFIS, Thomas, Yoon model and ANFIS
stood up than other two with a high
value of R and less value of RMSE and
MAE.

Table 3b

The summarized details (predictive models, river or region, input/output variables, performance metrics and research remark) of the reviewed researches on heavy metal

variables using the feasibility of fuzzy logic models over the period (2000—2020).

SLNo. Reference Predictive River Input/Output Performance Matrix Remark
models or
region
1 Sonmez  An adaptive Filyos The concentration The mean absolute deviation (MAD), mean squared ANFIS methodology for Cd metal prediction found

et al. neuro-fuzzy River, of Fe, Cu, Mn, Zn, error (MSE), root mean square error (RMSE), mean
absolute percentage error (MAPE), Nash-Sutcliffe
efficiency (E), and coefficient of determination (R?). model can be dependable for another heavy metals

(2018) inference

system (ANFIS)

Turkey Ni, Cr/Cd
concentration

better than conventional data processing method
with high correlation. Authors suggested ANFIS

predication.

the fuzzy logic, ANN, and ANFIS models are presented in this sec-
tion. These models have been used for Pb ion adsorption prediction
(Jana et al., 2018; Rahmanian et al., 2011, 2012). They typically used
S/M and pH/flux or rejection ratio as input parameters. The first
study used the BBD of RSM to optimize the data for the Mamdani
model’s structure of the fuzzy logic system along with the triangle
membership function as the input and max—min aggregation and
centroid defuzzification methods to calculate the reliability and
accuracy of prediction.

Rahmanian et al. (2011) addressed the FFD to distinguish all the
important factors of the experimental process of Zn(Il) rejection
estimation, permeate flux, and its prediction. Given that factorial
designs produce many curvatures, the Mamdani fuzzy model
network applied a fuzzifier, a defuzzifier, and a fuzzy inference
engine to capture the curvature of the response. The authors
concluded that the result of the model was qualitatively and
quantitatively consistent with actual data.

Two intensive studies on Cu(Il) ion removal were reported in
2013. Bingol et al. (2013) compared the ANFIS and MLR prediction
models for date palm adsorption. The ANFIS model was designed
with an FFNN in which each layer was a neurofuzzy layer with 27
rules and gaussmf to achieve a prediction accuracy better than that
of the MLR model. Turan and Ozgonenel (2013) stated that the
ANFIS (pi-shaped MF) model was better than the full-factorial
mathematical design in predicting clinoptilolite adsorption capac-
ity from real industrial wastewater (i.e., effluent of ETI Copper
Works in Samsun, Turkey).

In another study, Jafari and Jafari (2014) applied three different
Al approaches (i.e., ANN, ANFIS, and RSM), to simulate and predict
Hg(II) removal. CCD, LM, and Gaussian MFs were selected to design
the RSM, ANN, and ANFIS models because of their low error terms.
All three models showed potential in predicting Hg(Il) removal.
However, researchers conducted a verification test to produce the
sequencing of the model by obtaining low to high percentage errors
(ANN < ANFIS < RSM). The ANN model exhibited the most accurate
predictability in mercury removal.

Mandal et al. (2015b) investigated the predictability of the batch
and column experimental process of As(Ill) and Cr(VI) removal

percentage prediction by using the neurofuzzy method to reduce
the cost of experimental efforts. A hybrid (combination of the
gradient descent and least squares methods) learning rule (i.e., the
Sugeno type fuzzy model) with Gaussian MFs used 81 and 32 rules
for the batch and column experiments, respectively, to achieve
remarkably high in terms of predicting both ions.

Rebouh et al. (2015) used two predictive models—an intelligent
modeling system (i.e., ANFIS) and a conventional mathematical
isotherm model (i.e., Langmuir, Freundlich, and Redlich—Peterson),
to predict the Cu(Il) and Cr(VI) removal process. ANFIS was proven
to be a better predictive model compared with traditional isotherm
models in terms of evaluating interpolated and extrapolated data.
ANFIS used the bell-shaped function at the first layer for exhibition,
the t-norm to “AND” membership grades at the second layer, the
ratio calculation for the firing strength at the third layer, and the TS
fuzzy design at the fourth layer. Researchers proposed this model
for use in predicting other HMs, dyes, and organic solvents sepa-
rately or in groups.

In another study, Ronda et al. (2015) used two models (i.e.,
ANFIS and FFD) to predict Pb(II) ion adsorption. The second-order
equation (i.e., the 27 (33) of the FFD method) illustrated all fac-
tors that considerably influence the response. The Gaussian mem-
ber function stood out with the best modeling architecture of the
ANFIS model for predicting Pb(II) ion adsorption. The effect of
chemicals follows the order NaOH > H,SO4 > HNO3; > untreated
olive stone (0OS) as per their adsorption improvements of OS bio-
sorption (Table 3 (a)).

Javadian et al. (2017) studied an intelligent architecture-based
fuzzy technique (i.e., Mamdani-type of fuzzy inference) that com-
prises 26 rules with eight levels of triangular membership func-
tions. The technique indicated a R? value and exhibited its potential
in predicting Pb(II) sorption.

Lashkenari et al. (2018) conducted a comparative study of an
intelligent modeling system (i.e., ANFIS) and empirical models (i.e.,
Thomas and Yoon methods). Among the various membership
functions utilized, gbelmf was the best, followed by trapmf and
gaussmyf, as per the high R value, the Nash—Sutcliffe (N—S) coeffi-
cient, and low MAE and RMSE. The results of ANFIS revealed more
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matches with the experimental value compared with those of the
empirical models for Zn ion adsorption using a nanocomposite (-
Fe,;0s/polyrhodanine) in a fixed-bed column experiment.

Sonmez et al. (2018) explored five layers of the learning process
of the hybrid learning algorithm and used gaussmf to design a TS-
type fuzzy inference system for the prediction of Cd ion concen-
tration of the Filyos River in Turkey. ANFIS displayed a high degree
of reliability and robustness, as indicated by performance
evaluators.

2.3. Kernel models (support vector machine (SVM), support vector
regression (SVR), SVM—GA

Since 1995, the support vector machine (SVM) has been used in
the development of the science and engineering fields (Vapnik,
2013). However, it has not been explored much for solving envi-
ronmental issues. For HM removal, minimal research has been
conducted in the past two decades, as illustrated in Table 4. The
generalizing capacity of SVM makes SVM superior to many Al
models due to its prompt high convergence response and because it
overcomes the overfitting phenomenon and ignores the local
minima (Parveen et al., 2017a; Solgi et al., 2017). The comprehen-
sive theoretical and mathematical concepts of kernel-based
learning methods have been discussed in previous studies (AK,
2002; Cristianini and Shawe-Taylor, 2000). In general, the proper
kernel function of SVM called support vector regression (SVR) is
used to rectify regression issues, which is utilized to construct
nonlinear data-driven models for small samples, local minima, and
high-dimensional space (Aryafar et al., 2012; Solgi et al., 2017). In
recent years, several studies have investigated SVM. Salehi et al.
(2016) proposed the intelligent least squares SVM (LS-SVM)
method to predict the equilibrium adsorption of Cu(Il). The LS-SVM
method obtained optimized data from coupled simulated anneal-
ing (CSA). Then, the nonlinear and linear equations (Lagrange
multipliers) were separated using the appropriate kernel function
(i.e., RBF). The authors evaluated the performance of the model
through an advanced R?;, matrix along with five performance in-
dicators and found a high agreement between the predicted and
actual values.

On the basis of Shur River’s downstream HM detection, pre-
diction, generation, release, and transportation, two exclusive
studies are reviewed in this section. Both studies compared two
data-driven models (Gholami et al., 2011). compared the SVM and
BPNN models for predicting Ni and Fe metals, whereas (Aryafar
et al., 2012) compared the SVM and GRNN models for Cu, Fe, Mn,
and Zn. The robust intelligent system (the SVM) is trained with the
early stopping and automated Bayesian regularization method
most of the time, whereas the leave-one-out (LOO) cross-validation
technique is used to estimate the optimum procedure for the radial
basis Gaussian function (RBGF) kernel technique, which is used to
build the model effectively. The BPNN was trained with the early
stopping and automated Bayesian regularization method by
(Gholami et al., 2011), whereas the trial-and-error method with an
optimum smooth factor (SF) was utilized by (Aryafar et al., 2012) to
construct the GRNN model. Overall, statistical learning theory (SLT)
(i.e., SVM) outsmarts the BPNN and GRNN models due to its high
degree of accuracy, reliability, and consistency with the experi-
mental data. The other models also alternative options after SVM as
per their evaluator indicators. A reviewed study also reveals that Ni
metal prediction was more accurate than Fe metal prediction, and
another study reported an HM removal sequence of Mn, Zn, Cu, and
Fe from high to low prediction accuracy.

Aya et al. (2016) studied the removal rate of Fe(II), Mn(lII), fulvic
acid, and iron hydroxide from drinking water, which has been
modeled for selecting optimal parameters for the best prediction

value using the unified SVR model. A grid search with 10-fold cross
validation was used with the RBGF kernel technique to generalize
and enhance the performance of the SVR model.

A team of researchers compared the predictability of SVR
against an MLR model for Pb(II) ion sorption in the first study and
analyzed the Cu(Il) ion biosorption capacity in another study
(Parveen et al., 2017b, 2016). In both studies, the SVR model was
developed with a hyperparameter and an RBGF kernel parameter,
thus providing optimized data from the grid search methodology
with 10-fold cross validation. The problem of kernel function and
bias parameters was rectified using single Karush—Kuhn—Tucker
conditions. The SVR model outperformed the MLR model as indi-
cated by various evaluation indicators (Table 4).

Gonzalez Costa et al. (2017) conducted a comprehensive
research on five toxic metals (i.e., Cd, Cu, Ni, Pb, and Zn) as a
response and 15 explanatory variables to characterize soils using
SVM, MLR, and regression trees. LM multiple regression was found
to be a remarkable model. MLR exhibited more affinity for Cr, Cu,
and Pb which are associated with a humified organic matter (OM),
and hematite. To overcome the challenge of noise, the SVM model
utilized the maximum parsimony principle. Most explanatory in-
puts were clay among 15 predictors followed by the percentage of
vermiculite and slime where these were same in case of Cd and Cr
adsorption as well. Furthermore, these two metals illustrated
remarkable performance by both MLR and SVM regression. Mar-
ginal adsorption and retention have been reported between Cr and
Cd and Cu and Zn in multiple regression and between Cr and Cd in
SVM regression. Ni adsorption was estimated to have the highest
number of variables.

In 2017, Cr(VI) sorption prediction was studied by using and
comparing the SVR, MLR, and ANN models (Parveen et al., 2017a).
The RBGF kernel function was constructed in the SVR model to
generalize, optimize, and predict efficiency, and SVR outperforms
MLR and ANN in terms of predictability accuracy, and
generalization.

Two studies based on a hybrid model (i.e., SVM-GA) have been
conducted. Hlihor et al. (2015) used GA for adaptive crossover and
mutation rates to enhance the rate of model performance. RBGF
was used for the structural risk minimization (SRM) principle for
the SVR algorithm (SVM for regression) to build a robust intelligent
system and capture the pattern easily for Cd(Il) biosorption pre-
diction. Meanwhile, Solgi et al. (2017) proposed the combination of
SVM and GA and compared it with the ANN model in terms of
predicting Cr(VI) removal. GA is popular for its usefulness in the
global search of complex search spaces. Hence, GA was used to
optimize the input data for the RBGF constructed for the SVR
model. In the model, LM was used to train the MLP network of the
ANN model, which used the same variable and was evaluated by
various indicators. The SVR model outperformed the ANN model.

2.4. Evolutionary models

Evolutionary models (e.g., differential evolution (DE), genetic
programming (GP), GA, PSO, etc.) have emerged recently in HM
removal modeling due to their high capability of reducing global
optimization issues by using different genetic functions (i.e., cross
over and mutation) and search algorithms, thereby addressing
overfitting problems, especially in cases of GA and GP (Danandeh
Mehr et al., 2018; Esmaeili and Hashemipour, 2018; Kinnear et al.,
1999). GP is famous for being less problem-dependent while
computing with an intelligent approach (Okhovat and Mousavi,
2012). GA is also popular for its application of mutation and
crossover to a population of encoded input data spaces and
addressing many optimization issues (Cao et al., 2017). Information
on detail theory and the mathematical approaches of evolutionary
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The summarized details (calibration approach, predictive models, input/output variables, performance metrics and research remark) of the reviewed researches on heavy
metal variables using the feasibility of kernel models over the period (2000—2020).

Sl References
No

Treatment Technique/source
of heavy metal

Proposed predictive
models

Input/output variables

Performance Research finding
indicators

1 Okhovat and
Mousavi (2012)

2 Curteanu et al.
(2014)

3 Mandal et al.

(2014a)

4 Yasin et al. (2014)

5 Mohan et al. (2015)

6 Patil-Shinde et al.
(2016)

7 (Zafaretal, 2017)

8 Caoetal (2017)

9 Fanetal (2017)

10 Hoseinian et al.

(2017)

11 Subashchandrabose

et al. (2017)

12

Filtration by nanofilter(NF)/
Aqueous solution

Adsorption by ash and
modified ash

Adsorption by cerium oxide
tetraethylenepentamine
(CTEPA) hybrid material/
Aqueous solution

Adsorption (by intercalated
tartrate-Mg-Al layered
double hydroxides)/Aqueous
solution

Adsorption by cupric oxide
nanoparticles (CuONPs)/
Aqueous solution

Adsorption by tannin-
formaldehyde (TFA) and
tannin-aniline formaldehyde
(TAFA) resins/Aqueous
solution

Adsorption by Zn-loaded
pinecone Biochar/stock
solution

Adsorption by Reduced
Graphene Oxide-Supported
(Fe304/rGO) Composites/
Aqueous solution

Biosorption by Reduced
graphene oxide-supported
nanoscale zero-valent iron
(nZV1/rGO) magnetic
nanocomposites/Aqueous
solution

ion flotation/Aqueous
solution

Genetic
programming

SNN-GA (neuro-
evolutionary
optimization
methodology)

GP, LS-SVM

ANN and Genetic
algorithm (GA)

ANN-GA, RSM

computational
intelligence (CI) such
as genetic
programming (GP)
and genetic
algorithm (GA)

RSM, ANN, Hybrid
Artificial RSM_GA

ANN-GA, ANN, RSM

RSM, ANN-genetic
algorithm (GA),
ANN-particle swarm
optimization (PSO)

ANN, Hybrid neural-
genetic algorithm
(GANN)

Biosorption by soil microalga, ANN, GA, Factorial

Chlorella sp. MM3/Aqueous
solution

design

Feed concentration and TMP/ions
rejection (As, Cr, Cd)

type of adsorbent, pH, adsorption
time, solid/liquid ratio, and the initial
ion concentration in solution/process
yield for Cu(II)

Temperature, time, concentration, pH R?, MSE,

and dose/As(III) removal RMSE, MAPE,
AARE, NB, SD
(o), chi-
square (2)

time, solution pH, adsorbent dosage, R®

and lead ion concentration/Removal

of Pb ions

initial Cr(VI) concentration, pH, R?, MSE

adsorbent (CuONPs) dose, and

temperature/Cr(VI) removal

Moles of tannin, aniline and RMSE, R

formaldehyde, and reaction pH/
adsorption (%) of arsenite [As (III)] and
arsenate [As (V)] ions on TFA and
TAFA

As(IIT) concentration, EtOH
concentration, and pH/As(IIl)
adsorption capacity

SEP, PE,
RMSE

temperature, initial pH, MSE, R?
initial Hg ion concentration and
contact time/removal percentage of

Hg

operating temperature, initial pH,
initial concentration and contact
time/removal efficiency (%) of Cu(Il)

pH, collector concentration, frother = R, NRMSE
concentration, impeller speed and
flotation time/removal percentage of
Ni(II) ions and water during ion
flotation

Interaction between the quaternary RE
mixture of polyaromatic

hydrocarbons (PAHs), phenanthrene

and benzo[a]pyrene, and two heavy
metals (Cd and Pb)/removal of PAH

and uptake of heavy metals

RZ

R, APE, MSE

R?, ABE, MSE

R?, SSE, MSE, GP used as a predictable tool to assess
RMSE, NB%

the performance of NF process for
each HMs removal separately, in line
to ion rejection as a function of TMP
and feed concentration. GP exhibited
as an empirical model which
promptly acted as a less problem-
dependent model

SSN entails of three different neural
structure of MLP and fetched optimal
data design by GA of ANN to optimize
the best output. Authors performed to
optimize the removal process to give
best process yield, mostly.

GP method performed better
predictively for As (III) than the LS-
SVM model and showed 97.2%
maximum removal by the hybrid
adsorbent.

Levenberg-Marquardt (LM) of ANN
used to develop a predictive model to
achieve the best determination
coefficient (R?) value, whereas, ANN
model used with GA to utilize the
simulation and optimization of the
lead ions removal.

CCD of RSM optimized the best
coherency between variables and
target and then followed by ANN-GA
model to predict the Cu (VI) removal.
Proposed ‘GP-GA’ hybrid model is for
modeling and optimizing the
adsorption reaction data without
detailing of physiochemical
properties of reaction. The very first
time this hybrid model introduced in
Environmental Engineering

This study depicted RSM-GA was
perfect to predict a better optimal
solution than normal RSM with a high
value of PE. ANN used to estimate the
stimulating effect of EtOH followed by
pH and As(Ill) concentration on the
adsorption phenomena; whereas, the
quadratic model showed the dull
impact on the same variables.

RSM and ANN used to optimize the
variables for enhancing the response,
whereas ANN-GA showed better
agreement with experimental data
than RSM model.

ANN-PSO reported the best model to
optimize the biosorption process over
RSM and ANN-PSO.

ANN predictive model reported better
than GANN in line to NRMSE and R.
Sensitive analysis has been done to
raise up the best suitable input
variable to maximize the removal
efficiency and water removal.

Use of ANN and GA is limited than
factorial analysis. First-time factorial
design with ANN and GA reported by
researchers. This hybrid predictive
model performed significantly for
removal of PAH and uptake of heavy
metals along with satisfactory RE.

(continued on next page)
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Table 4 (continued )

Sl References

Treatment Technique/source Proposed predictive Input/output variables

Performance Research finding

No of heavy metal models indicators
Esmaeili and Adsorption by CNT/aqueous Genetic adsorbent dosage, initial solution pH, GP showed its perfectness to predict
Hashemipour solution Programming (GP) initial concentration of Cr(VI), contact more data to utilize for kinetic and
(2018) time and temperature/final equilibrium parameters.
concentration of Cr(VI)
13 Karri and Sahu Adsorption by palm oil kernel Differential initial solution concentration, R?, RMSE Higher R2 and lower RMSE calculated
(2018) shell/Aqueous solution evolution(DE) pH, AC dosage, residence time and in terms of ANN_DE, which depicted
embedded neural  process temperature/percentage better optimization and predictive
network (ANN_DE), Zn(II) removal model than RSM-CCD.
RSM_CCD
14 May Tzuc et al. Biosorption by clinoptilolite- genetic the contact time, pH value, initial R?, MAE, Genetic programming model focused

(2018) rich tuffs/aqueous solutions  programming (GP)
model and Swarm
Particle

Optimization (SPO)

15 Nag et al. (2018) Bioremediation by natural
(leaves of jackfruit, mango
and rubber plants) waste

materials/Stock solution

Hybrid model (GA-
ANN)

cd()

16 Sutherland et al.
(2018)

Biosorption by banana floret/ ANN_GA
aqueous solutions

17 Sadat Hoseinian
et al. (2019)

Ion floatation/Synthetic
wastewater

GANN, MLR

concentration, and sorbent dosage/
Pb(II) removal

Number of Sorbent, pH, adsorbent
dosage, time, and initial
concentration/percentage removal of CCC, %>

Agitation speed, particle size, pH,
time/removal of Cu(Il) ions

Time, collector concentration, frother R, MSE
concentration, pH of solution/Zn(II)
removal

RMSE, MAPE on assessing the optimal input
variable for best output i.e. Pb
removal, whereas, SPO used to
calculate the optimal values.
Therefore, the coupled model found a
reliable tool to optimize the input
variables for the best output.

This hybrid model used to slim down
the optimized performance of the
network. A low value of MSE showed
excellent performance of the network
analysis.

ANN model used as a predictive and
optimized by using GA. The ANN-GA
prediction found a very less residual
error.

Hybrid model (GANN) predicted Zn
(II) ion removal superiority then MLR
as displayed by R ad MSE indicators.

MSE, R,
AARE, SD,

RE, MSE

model can be obtained from well-known references for DE
(Feoktistov, 2006; Price et al., 2006), GP (Banzhaf et al., 1998; Koza
and Koza, 1992), GA (Davis, 1991; Jang et al., 1997), and PSO
(Chatterjee and Siarry, 2006; Eberhart and Shi, 2001). DE increases
the robustness of Al by adjusting the weights and minimizing the
biases of the neurons (Karri and Sahu, 2018). Despite its promising
quality, few studies on DE have been conducted, as exhibited in
Table 5 (a and b).

Okhovat and Mousavi (2012) proposed a novel robust intelligent
model (i.e., GP), for As, Cr, and Cd removal prediction. GP was
selected by the authors due to its minimal dependence on problem
domain knowledge as input data to the concentration and trans-
membrane pressure. Meanwhile, ion rejection was used as
dependent data. GP showed a high degree of consistency between
the predicted value and the experimental data through its various
evaluators, as mentioned in Table 5.

Mandal et al. (2014a) presented a strong evidence of the ability
of GP and the LS-SVM model for As(Il) removal prediction. Further
analysis revealed that the GP model exhibited minimal error in case
of a large range between population size and number of generation
values. The termination criterion was obtained after several mu-
tations via the crossover approach, resulting in the higher corre-
lation between the predicted value and actual data via GP
compared with that via the LS-SVM model.

Mohan et al. (2015) exhibited the effective ability of a hybrid
model (i.e., ANN-GA) for Cr(VI) removal prediction; the model was
fed by optimized variables obtained by the CCD of the RSM model.
GA was used to optimize the weight and bias of the feedforward
MLP architecture of the ANN model, which was constructed by the
BP algorithm to reach its maximum performance. ANN-GA was
applied for Cr(VI) removal process optimization, which was 8.1%
higher than that using RSM. In addition, ANN-GA exhibited a better
prediction ability compared with RSM.

Cao et al. (2017) examined Hg removal prediction with various
input variables by using a GA embedded in an ANN model. The
solution of optimization issues and the enhancement of the

adsorption rate through the ANN-GA model resulted in a 5% error
between the predicted and actual values, which was significantly
lower than the error deliberated by the RSM model in which BBD
was used to calculate the response function and determine the
coefficient.

Hoseinian et al. (2017) established a hybrid neural—genetic
robust model for Ni(Il) removal prediction. Compared with when
the ANN model alone is used, the initial weights of the neurons and
the threshold of the network features were adjusted for the hybrid
ANN-GA model to escape the local minima and match the predicted
data with the actual value. With only the ANN model, the CCD al-
gorithm was applied to build the RSM model to optimize and then
simulate the treatment procedure using the ANN model.

Esmaeili and Hashemipour (2018) proposed the GP model for
Cr(VI) adsorption prediction. The major reason for selecting GP was
to generate additional data for kinetic and equilibrium model
prediction and precise estimation. The GP model uses an initial
population by using the tree and max gene depth approach to show
its potential.

Recently, Nag et al. (2018) presented a GA-ANN hybrid model for
Cd(II) ion removal prediction. The authors used GA to optimize the
treatment procedure, the input variable, and the number of neu-
rons at the hidden layer and enhance the adsorption and perfor-
mance of the Al model. GA was performed by utilizing the roulette
selection rule along with the single point crossing over and uniform
mutation rules. The performance of the GA-ANN model is superior
to various conventional isotherm models.

Two rigorous scientific works are discussed in this section,
focusing on the As(lll, V) removal process. These processes were
optimized and simulated by various computational intelligence
approaches, such as GP, GA, RSM, ANN, and RSM-GA (Patil-Shinde
et al., 2016; Zafar et al., 2017). The data-driven modeling strategy
(i.e., GP) minimized the complication of assumptions regarding the
form of the data fitting function and used the optimized input data
acquired by the GA algorithm, thereby improving the adsorption of
As(V) on tannin-aniline formaldehyde (TAFA) resin by 12.77% with
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Table 5a

The summarized details (calibration approach, predictive models, input/output variables, performance metrics and research remark) of the reviewed researches on heavy
metal variables using the feasibility of evolutionary models over the period (2000—2020).

SL.No. References Treatment Technique/source of Proposed

Input/output variables

Performance Research finding

heavy metal predictive indicators
models
1 Hlihor Biosorption by dead and living  SVR-GA pH, biomass dosage, metal R? SVM-GA used to find the optimal working
et al. biomass of Trichoderma viride/ concentration, contact time and conditions and produce high prediction value
(2015) Aqueous solution temperature/biosorption efficiency by its performance indicators.
of Cd(II)
2 Aya et al. Adsorbent by submerged reactor SVR Fe(Il), Mn(Il), fulvic acid and iron ~ R? RMSE A unified SVR method used to estimate the

(2016) membrane/Stock solution hydroxide/membrane pressure performance of the membrane in terms of Fe
change and Mn ion removal.

3 Salehi Adsorbent by modified Least-Squares ~ Membrane adsorbent types, initial R?, APRE, Authors used LS-SVM algorithm and got
et al. membrane [amino- Support-Vector- concentrations of Cu(Il) ion and AAPRE, satisfactory confidence limits and correlation
(2016) functionalized multi-walled Machine (LS- temperature/Equilibrium RMSE, STD, coefficients to predict adsorption efficiency of

carbon nanotubes (MWCNT- SVM) adsorption of Cu(Il) ion R%, modified MWCNT which was prepared and
NH,)]/synthetic water studied holistic approach of adsorption process
in their previous work (Salehi et al., 2016)

4 Parveen  Adosrption by tree fern/Aqueous SVR, MLR Initial lead concentration, pH, AARE, R, Hyperparameter(C, ¢) and Kernel parameter
et al. solution temperature and contact time/ RMSE, SD, (RBF, y) kernel used to architect the RBF and
(2016) sorption capacity of Pb (II) MRE the performance indicators of this model

shows better than the SVR model
predictability.

5 (Gonzalez Sorption by soils/Soil sample SVM, MLR, 15 explanatory variables R?, MAD Authors reported each of the metals adsorption

Costa regression trees characterizing soils/Sorption and
retention of Cd, Cu, Ni, Pb and Zn

etal, (RT)

2017) metals
6 Parveen  Biosorption by a litter of natural SVR, MLR

et al. trembling poplar(Populus

(2017a) tremula)/Aqueous solution

efficiency

Adsorbent concentration, pH,
particle size, initial Cu(II)
concentration, agitating speed and MRE
temperature/Cu(Il) biosorption

and retention and grouping as a binary
combination. Cr, Cu and Pb sorption and
retention were exhibiting higher R? value.
R? R, AARE, Again the same authors used SVR and MLR
RMSE, SD, with the same training and testing algorithm
but different variables in input and output.
Again, the author found SVR is superior in line
to generalization and prediction ability.

7 Parveen  Adsorption by maize bran/ ANN, Support  contact time, initial sorbate R, AARE, SVR raised up in statistical evaluation
et al. aqueous solutions Vector concentration, pH of the medium  RMSE, SD, parameters, higher generalization ability and
(2017b) Regression and temperature/sorption capacity MRE accuracy than ANN and MLR, consecutively.
(SVR), MLR of Cr(VI) ANN and MLR were based on empirical risk

8 Solgi et al. Adsorption by Medlar seed ANN, Support

pH, initial concentration of Cr(VI), R?

minimization (ERM).
Very first time Medlar seed used as an

(2017) (Mespilus germanica)/Aqueous  Vector adsorbent dosage and contact time/ adsorbent to remove Cr (VI). Hybrid SVR-GA
solution Regression- % of Cr(VI) removal model predicted % of Cr (VI) removal better
Genetic than ANN with more accurate of Regression
Algorithm (SVR- correlation coefficient value.
GA)
Table 5b

The summarized details (predictive models, river or region, input/output variables, performance metrics and research remark) of the reviewed researches on heavy metal

variables using the feasibility of evolutionary models over the period (2000—2020).

SLNo. Reference Predictive models River or region Input/Output

Performance Remark

Matrix

1 Gholami  SVM, back-
et al. propagation neural

Shur River, southern
Iran(Feb 2006)

(2011) network (BPNN) concentrations
2 Aryafar  Support vector Shur River,

et al. machine (SVM), Sarcheshmeh copper

(2012) General mine, Iran (Feb 2006)

Regression neural
network (GRNN).

pH, S04, HCO3, TDS, EC, Mg, The correlation
and Ca/Ni and Fe

Inline to the high correlation coefficient and faster
coefficient (R) and running time have been obtained by SVM than BPNN
RMSE

pH, S04, Mg/Cu, Fe, Mn, Zn RMSE, Correlation Both models are based on data-driven but SVM stood up

coefficient (R) in line to explicitly with RMSE reduction and quicker

than GRNN.

a high degree of agreement with the actual data of As(Il, V)
adsorption (Patil-Shinde et al, 2016). In another study, GA-
optimized data were simulated with the RSM model, showing a
better performance compared with the BBD-optimized data. This
RSM-embedded data along with a feedforward neural network
trained by the LM BP algorithm performed well due to the appli-
cability of the search algorithm and the global optimization solu-
tion (Zafar et al., 2017).

Two intellectual studies are reviewed in this section for Zn(II)
removal prediction to develop an Al model, i.e.,, ANN-DE, RSM,
GANN, and MLR (Karri and Sahu, 2018; Sadat Hoseinian et al., 2019).

Delay in mode building occurred due to eight/bias issues, which
were addressed by the hybrid model (i.e.,, DE entrenched with
ANN), which outperformed the CCD-embedded RSM model (Karri
and Sahu, 2018). In another study, GA was used to adjust the
initial weight and threshold of the BP algorithm to improve the MLP
model performance over MLR and RSM (Sadat Hoseinian et al.,
2019).

Three exhaustive works on a hybrid intelligent model for Cu(lI)
removal prediction are examined (Curteanu et al., 2014; Fan et al,,
2017; Sutherland et al., 2018). The first study proposed a neuro-
evolutionary optimization methodology (i.e., single neural network
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(SNN)-GA). An SNN comprises three combinations of MLP (8:20:1),
MLP (8:25:1), and MLP (8:18:1), with optimized percentage con-
tributions of 60%, 27%, and 13%, respectively. A stack composed of
an MLP network processed with GA-optimized input data produced
an effective prediction of Cu(Il) as per the performance indicators
(Curteanu et al., 2014). In the second study, two robust intelligent
modeling systems were introduced (i.e., ANN-GA and ANN-PSO)
and compared with each other and with RSM. The optimized
value for procedure showed maximum model efficiency evaluated
by ANN model than RSM, whereas BPNN (i.e., ANN-PSO) searching
the optimization by updating the generations, found superior by
3.15% and 8.54% in case of ANN-GA and RSM, respectively. Last year,
Sutherland et al. (2018) used a stochastic nonlinear optimization
method (i.e., GA) to enhance the efficiency of the ANN model for
Cu(Il) removal prediction using different variables, and ANN-GA
performed well.

Three scientific works on Pb(Il) removal prediction using various
statistical and intelligent predictive models are logically examined
in this section (May Tzuc et al., 2018; Subashchandrabose et al.,
2017; Yasin et al., 2014). Yasin et al. (2014) utilized the remark-
able features of GA to optimize the experimental predictors and
enhance the presentation of the model. Then, they used the LM-
trained ANN model in the simulation process to produce the
highest prediction value. Subashchandrabose et al. (2017) proposed
the FFD for its typical advantages of easy and precise factorial
analysis and used it in the ANN and GA models for predicting the
uptake capacity of HMs. Therefore, improved input data were uti-
lized in the embedded model, exhibiting a high degree of predictive
robustness and consistency with the experimental data. May Tzuc
et al. (2018) integrated GP with PSO for its well-known features
that suited the experimental procedure of Pb(II) removal. The
syntax tree of GP arranged the population (individuals), which was
reproduced through generations, and obtained the mathematical
equation through an iterative process by which PSO performed well
on multivariable optimization problems to produce high-
performance matrices.

2.5. Hybrid soft computing model application

Different types of data mining models, such as ANN, RSM, MLR,
fuzzy logic, SVR, GA, and GP, have many advantages. However,
various issues, such as the activeness of nonlinear regression data,
the normalization conditioning of the variables, and the initial
weight adjustment of the neural network, remain. A trend has
progressed to host new mathematical or statistical methods
broadly in environmental engineering for the complex nonlinearity
of the experimental data of the HM removal process. The flexibility
of improved or hybrid methods enables them to deal with the
problems mentioned above. A hybrid or improved model is
required to improve the robustness of the model for specific HM
treatment techniques. Ignoring the variance issues to enhance the
forecasting process (Quinlan, 1996), proposed BRT. Nonlinear
equation performance can be enhanced by regression analysis and
evaluated by different PMs (Yan et al., 2000). Hybrid models of Al
have to go long way for HM removal prediction as the limited
number of studied conducted so far which displays in Table 6 (a and
b). The following models or algorithms could be learned compre-
hensively through theoretical and computational approaches, such
as the dose response (DRM) and diffuse layer (DLM) models
(Dobson and Barnett, 2008; McCullagh, 2019), SOM (Kohonen et al.,
1999; Ritter et al., 1992), BRT (Friedman, 2002; Roe et al., 2005),
distributed time delay (DTD) (Zhou, 2014), cascade forward
(cascade) and Elman (Elman) neural networks (Cheng et al., 2002;
Fahlman and Lebiere, 1990), quantitative ion character—activity
relationship (QICAR) model (Le Faucheur et al., 2011), artificial

bee colony optimization (ABCoptim) (Karaboga and Basturk, 2008),
group method data handling (GMDH) (Farlow, 1984; Onwubolu and
Onwubolu, 2015), and partial least squares regression (PLSR) (Abdi
and Williams, 2013; Jang et al., 1997).

Two decades ago, Yan et al. (2000) presented a modified
nonlinear regression model (i.e., DRM) that outperformed con-
ventional isotherm models (i.e., Thomas or Bohart model and
Adams model) for HM (Pb, Cd, Ni, and Zn) biosorption kinetics by
(Mucor rouxii) column. The nonlinear least squares method was
utilized to assess the parameters of the nonlinear regression model
to obtain high R? values.

In 2001, a surface complexation model with DLM was proposed
to understand the surface charge effects on adsorption and enhance
the adequacy of the prediction of Cu(Il) and Cd(II) removal (single
or combination of HMs) from the dried waste slurry obtained from
seafood-processing factories (Lee and Davis, 2001).

Lee and Scholz (2006) proposed an SOM model to predict two
HMs (i.e., Cu and Ni), in wetlands. SOM can be utilized with com-
plete domain knowledge. The Euclidian distance was used to
measure the weight vectors of SOM, and those near the best
matching unit (BMU) were selected. Furthermore, the BMU result
in the map for each dataset was used to predict the HM removal in
urban runoff and evaluated by the low mean absolute scaled error
and high R% The quantization (QE) and topographic (TE) errors
were obtained for the mean distance between each data and BMU
and for a proportion of all data.

Khajeh et al. (2013) conducted a comparative study between
RSM and ANN-PSO for the prediction, simulation, and optimization
of the Mn and Co metal extraction process by using a tea waste
adsorbent. The BBD algorithm was used to optimize the experi-
mental variables for the ANN and RSM models. PSO typically ad-
justs the initial weight by searching a large area of neurons to
enhance the robustness of the ANN model, thus facilitating HM
prediction with a higher consistency with the experimental data
compared with the conventional statistical model (i.e., RSM).

Thomas breakthrough equations and the ANN model were
applied for two commercial bone chars (i.e., BCM and BCB) to
analyze the potential and challenges of hybrid models and deter-
mine the dynamic adsorption of fluoride contamination (Tovar-
Gomez et al, 2013). The input value of the Thomas model for
calculating the Fj/F, ratio was used as the output of the ANN model
to ignore its negativity restrictions. Another input value of ANN was
estimated by the Thomas breakthrough curves.

An ensemble approach (i.e., CCD of the RSM and desirability
function approach (DFA)) was applied to optimize the BRT, ANN,
and RSM models (Mazaheri et al., 2017) for Cd(Il) and MB dye
removal from walnut carbon. CCD was used to minimize the
number of experimental trials, which was essential to obtaining the
main effect of each parameter and its interactions. In general, the
CCD algorithm was used with the DFA to optimize the input vari-
ables and increase the removal percentage of HM and dyes. By
contrast, LM was used to train the ANN model and optimize the
grouping parameters (i.e., Ir, tc, and nt) to obtain the smallest values
of Ir for the best predictive performance of the BRT model with the
minimum error. BRT showed a better parsimonious model
compared with ANN and RSM by evaluating the performance
indicators.

Moreno-Pérez et al. (2018) introduced surrogate modeling
embedded with ANN, DTD, cascade, and Elman for the multicom-
ponent dynamic adsorption of ternary and quaternary HM ((i.e.,
Cd(II), Ni(II), Zn(II), and Cu(II) ions)) systems onto biochar. FFBP is a
common network aggregated with DTD (FFBP-DTD), which is
famous for its time dependency along with the tap delay line
associated with the input weight for obtaining the finite dynamic
output. Cascade has ensemble weights which comes from the input
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Table 6a
The summarized details (calibration approach, predictive models, input/output variables, performance metrics and research remark) of the reviewed researches on heavy
metal variables using the feasibility of hybrid soft computing models over the period (2000—2020).

SL. References Treatment Technique/source of Proposed predictive Input/output variables Performance Research finding
No heavy metal models indicators
1 Yanetal. Biosorption by Mucor rouxii/ — Modified dose-response Flow rate, influent pH and influent Random The modified model represented
(2000) Metal solution model (non-linear concentration of metals (Pb, Cd, Ni and error better suited for prediction and
regression model) Zn)/Biosorption of metals (Pb, Cd, Ni estimation of biosorption result than
and Zn) and breakthrough curve conventional models like Thomas

model and Bohart—Adams model with
the low error value.

2 Leeand Adsorption by a dried waste  Diffuse layer model PH, bed volume, the ratio of Cu(Il) and NA A surface complex model with DLM
Davis slurry of seafood processing  (DLM) Cd(11)/% adsorbed of Cu(Il) and Cd(II) showed significate tool to optimize
(2001) factories/Aqueous solution and predict the Cu and Cd removal

process by adsorption technique.

3 Leeand Biosorption by wetlands self-organizing map conductivity, pH, R?, MASE, QE, The SOM model showed the best
Scholz consists of gravel and sand (SOM) temperature and redox potential, DO, TE performance especially for Ni and Cu
(2006) substrate and native Outflow temperature/Ni and Cu in water flow. Correlation established

Phragmites australis/Urban concentration to set the best relation of input to each
runoff output.

4 Khajeh et al. Adsorption by solid-phase tea Hybrid of artificial neural pH, amount of tea waste, the RMSE, MPE, Authors used ANN_PSO and RSM
(2013) waste extraction network particle swarm concentration of PAN (complexing SEP, R predictive model to assess the removal

optimization (PSO_ANN), agent), effluent volume, the efficiency of the adsorption process of
RSM concentration of eluent, and sample Mn and Co. Hybrid ANN_PSO showed
and eluent flow rates/extraction better prediction fittings with a
percent Manganese (Mn) and Cobalt maximum correlation coefficient.
(Co)

5 Tovar- Fixed or packed bed adsorption Hybrid ANN-Thomas Feed fluoride concentration, the R?, MSE The first time, traditional linear
Gomez et al. by bone(BCM from Carbones  model operation time of packed bed column regression of Thomas breakthrough
(2013) Mexicanos and BCB from and the feed flow/break through the equations of vibrant adsorption

Brimac Carbon Services) char/ curve of fluoride adsorption process upgraded by application of
aqueous solution ANN with about unity of
determination coefficient.

6 Mazaheri  Adsorption by walnut wood/ BRT, ANN, RSM Stirring time, pH, adsorbent mass and R?, AAD, Variables importance on response and
et al. (2017) Aqueous solution (Binary) concentrations of MB and Cd?* ions/] MAE, RMSE  their respective places for it measured

percentage removal of MB and Cd?* by BRT. RSM used to analysis of

variance. CCD and DFA algorithm of
ANN used to optimize the variable for
effective response. BRT illustrated
obviously better than others in line to
performance indicators did for Cd and
MB removal process.

7 Moreno- Biochar (bone char)/Aqueous ANN surrogate model feed composition (C0), feed R?, eM %, RE The authors revealed that Cascade was
Pérez et al. solution [FFBP, FFBP-DTD, Cascade composition (CO)/concentration the best model for multi-metallic
(2018) forward neural network profile (C¢/Co) of Cu ion and multi- adsorption breakthrough curve

(Cascade), Elman neural metallic solution modeling against FFBP, FFBP-DTD and
network (Elman)] Elman.

8 Salahinejad Adsorption by multi-walled Quantitative ion Boiling point, Electronegativity atomic r2, 12,,, Q%00 QICAR used GA, ERM, SPA and ERM
and carbon nano tubes (MWCNTs)/ character-Activity number, covalent index, effective Qﬂmo‘ —OSC—PLS to optimize the best
Zolfonoun  stock solution Relationship (QICAR) nuclear charge, square of ionic radii RMSEC, variables of out of 200. ERM—ISC—PLS
(2018) with coordination number/qmax of 25 RMSEP, 12, Model revealed the best response for

HMs [Ag(I), Al(III), As(V), Ba(Il), Bi(Ill), MAE, CCC prediction of the removal capacity
Ccd over others. ERM searches with a full

(1), Co(II), Cr(III), Cs(I), Cu(II), Fe(III), landscape including local minima,
Ga(IIr), Hg(II), In(III), Mn(II), Ni(II), whereas, GA restricted with an initial
Pb(II), Rb(I), Se(VI), Sr (1I), Ti(IV), TI(T), set of variables.
V(V), Zn(II) and Zr(1V)]
9 Ferreira Biosorption by emulsion liquid artificial neural network concentrations of EDTA, D2EHPA, R?, RMSE Hybrid model (ABCoptim) successfully
et al. (2019) membrane of biosurfactant (ANN) and ABCoptim NaCl, and H2S04, and the contact satisfy the optimization of variables
[(ELMB), chelating agents and time/removal of Mn (II) for better yield and the fast process of
biosurfactant produced in predication reported by ANN of Mn (II)
loco]/Aqueous solution ion removal by the low cost of the
process i.e. ELMB techniques.
10 Sekuli¢ et al. Membrane filtration PNN_GMDH, MLR Characteristic parameters (molar mass R?, RMSE, PNN is non-physical and self-synthesis
(2019) techniques/Synthetic of heavy metals, molar mass of MAE, MAPE, ANN architect model used GMDH and
wastewater metallic solution, molar mass of d; MLR algorithm to understand the
complexing agent) and Operational complexity of the relation between
parameters [pH, initial concentration flux (output) and multivariable
of heavy metals {Zn(II), Pb(II), Cd(II)} (input). This model showed the perfect
ions, concentration of complexing result with different evaluator
agent, and pressure on flux]/flux indicators. Authors also reported
prediction published ANN work showed

incapability to understand this
experimental design relationship.
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Table 6b

The summarized details (predictive models, river or region, input/output variables, performance metrics and research remark) of the reviewed researches on heavy metal
variables using the feasibility of hybrid soft computing models over the period (2000—2020).

SL.No. Reference Predictive models River or region

Input/Output

Performance Matrix ~ Remark

1 Yu et al. Multivariate linear regression Five rivers (Yenshui Zn, Cu, Pb, Ni, Cr, Co/ Correlation These three statistical methods used to
(2001) (MLR), Correlation analysis river, Tsengwen river, correlation of binding coefficients (R), find the correlation between the
(CA), Principal component Chishui river, Potzu fractions between any two  Coefficients of metals, oxides, sediments matrices and
analysis (PCA) river, Peikang river) of heavy metals along with its  determination (R?) OM. CA and PCA used to find a binding
southern Taiwan. oxides and organic fraction of any two heavy metals along
(spring and summer of matter(OM) with its clarification. MLR method also
1998) used to evaluate the enslavement of
such a correlation.
2 Xia et al. A four univariate regressions Yangtze river of Bagua Cd concentration, spectral Pearson correlation This research revealed the theoretical
(2007) model (linear, logarithmic, zhou island, China variables/sensitive coefficients (PCC), approach to predict Cd concentration
power, exponential regression (October 2004) wavelength for Cd RMSE, Root-mean- and its binding types based on its
models), Partial least-square concentration. square error of cross- spectral data. PCC was evaluated to fix
regression (PLSR) validation (RMSECV) the sensitive wavelength for Cd
concentration by using CD
concentration and spectral variables.
The univariate model used to predict Cd
concentration by using its relation with
bands; whereas, PLSR used to compare
the univariate model result and
validated with RMSECV.
3 Wang Linear regression model (LRM), Huaihe River Concentration of Cu, Pb, Zn  Pearson correlation The concentration of Zn estimation

et al. Principle component analysis sediments, China (July and Ni/Enrichment factor(EF) coefficients, the
distribution, cumulative
distribution function (CDF)

(2015) (PCA), correlation coefficient  2013)
analysis (CCA)
4 Bhuyan PCA, Correlation matrix,
and Bakar ANOVA
(2017)

Halda river, Bangladesh Eigenvalues/Pb, Cd, Cr, Cu, Hg, p for ANOVA
Al Ni, Co, Zn, Mn,

went up among all by using LRM and
Correlation coefficient PCA. Researchers studied the geo-
accumulation index (Igeo) and
modified geo-accumulation index
(Igeom) and compare with the heavy
metal profile of regional background
along with the suggestion to the next
research is needed to confirm this.
PCA used to evaluate the best relation
between the heavy metals; whereas,
Correlation matrix found the set of the
relation between the variables. ANOVA
found no significant variation between
the site and HM.

and others antecedent. Elman has a context layer at the hidden part
for the familiarization of the time-varying characteristics of a
structure. The FFBP-DTD model exhibited improved multimetallic
adsorption breakthrough curve modeling and prediction perfor-
mance. The authors mentioned that the model failed to simulate
the zone of the breakthrough point. Therefore, the accuracy must
be improved by reducing the error for a packed bed column.

Salahinejad and Zolfonoun (2018) evaluated the performance
and challenges of the QICAR model for the absorption capacity of 25
HM s using multiwalled carbon nanotubes. QICAR is associated with
quantitative structure activity and inadequate with definable and
accessible descriptors for metal ions and an insufficient number of
metals. Each sample was optimized with GA (along with partial
least squares (PLS)), enhanced replacement method (ERM), and
successive projection algorithm (SPA). The orthogonal signal
correction (OSC) approach minimized the variation from input
variables. The SPA was used to ignore the variable collinearity is-
sues of the model. ERM was performed for the global search to
reduce the standard deviation of the linear model. The PLS-GA
method was applied to construct the QICAR model and secure
maximum adsorption. Lastly, the authors reported that the
ERM—O0SC—PLS model exhibited the best performance in terms of
understanding the behaviors of asymmetric relation and statistical
prediction performance.

Ferreira et al. (2019) proposed the ABCoptim algorithm to
improve the performance of the ANN model for Mn(Il) removal
procedure. ABCoptim was used to search the global optima of the
landscape by self-organization and the division of task as its basic
feature. The ANN-ABCoptim model’s performance was consistent

with the experimental data compared with that of the ANN model
alone.

Sekuli¢ et al. (2019) studied the competency of the GMDH and
MLR algorithms in understanding the complex behaviors of Pb(II),
Zn(II), and Cd(II) flux values through the membrane filter tech-
nique. A polyneural network is an auto-organizing ANN and a
nonphysical model that ignores the representative validation set; it
is superior to MLR or other conventional models due to its different
classes, such as linear, quadratic, and cubic, that suit the relation-
ship between the presented variables and the model response as
flux prediction.

Four studies are reviewed on the basis of different intelligent
models (i.e., regression, CA, and PCA) to estimate the HMs from
different river sediments in Asia (Bhuyan and Bakar, 2017; Wang
et al., 2015; Xia et al.,, 2007; Yu et al.,, 2001). The first study
compared the correlation analysis (CA), PCA, and linear regression
analysis (LRA) models to establish the relation of HM binding and
sediment matrices (Yu et al., 2001). CA and PCA revealed their
ability to strengthen the binary combination within HMs or with
sediment metrics, such as Cr—Fe oxides, Zn—OM, Pb—carbonates,
and Cu—OM/Fe oxide, which are stronger than three HMs (i.e., Co,
Ni, and Mn). In addition, PCA and LRA showed their capability in
other binary combinations, such as carbonate-bound Ni and Cr, Fe-
oxide-bound Ni and Cr, and Mn-oxide-bound Cu and Cr (Xia et al.,
2007). utilized four univariate regression models (i.e., linear, loga-
rithmic, power, and exponential regression models) and PLSR to
understand the complex behavior of Cd contamination in the
Yangtze River sediment of the Bagua Zhou Island, China. The
regression models revealed the quantitative and qualitative
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analyses of Cd ions in river sediment. PLSR was used for spectral
analysis by using different data transformations (i.e., Ref, nRefVIS,
and FD) for comparison with the univariate prediction models. In
addition, PLSR was utilized by the one-out cross-validation tech-
nique for the calibration set to achieve the unscrambler behavior. In
the third study, Wang et al. (2015) reported the statistical rela-
tionship of four HMs (i.e., Cu, Pb, Zn, and Ni) and their combina-
tions, and a reference element was observed from the sediment
from the Huaihe River, Anhui, China. Geochemical normalization
and linear regression were applied to predict HM concentration.
PCA and correlation coefficient analysis were applied to determine
the HM source. A modified geoaccumulation index (Igeom) was
utilized for generalization. However, a higher value was observed
by Igeom compared with Igeo. A linear regression model was used to
analyze Cu, Pb, Zn, and Ni concentrations; Zn exhibited the highest
amount. Recently, Bhuyan and Bakar (2017) performed PCA and
built a correlation matrix to understand the behavior variation of
HMs in the sediment and water of the Halda River in Bangladesh.
The spatial and temporal distributions of resultant factors were
determined using PCA tools and applied to determine the standard
features of dataset variations along with generalization and
unification.

3. Treatment techniques for HM removal

Clean water access declined with increasing globalization and
industrialization, which have also released various HM effluents in
freshwater systems (Le Vo, 2007; Molden, 2013). Fig. 4 shows the
most toxic and accessible HMs used for various studies in the past
20 years. The high toxicity of HMs and their accumulation and
retention in water bodies have highlighted the need for HM
removal studies over the past couple of decades. Fig. 4 illustrates
that the Cuion is the most interesting HM to be treated because it is
the most toxic to living organisms and available globally due to
industrial effluents, such as metal cleaning, plating baths, pulp,
paper board mills, wood pulp production, and the fertilizer in-
dustry (Ozer et al,, 2009; Shanmugaprakash et al., 2018). In addi-
tion, Cd, Pb, Zn, and Cr were observed in all reviewed studies in
terms of interest among researchers. The availability of Cd in soil
due to anthropological activities is toxic to animals and humans
(Mendoza-Castillo et al., 2018; Rossi et al., 2019). Pb has typical
disadvantages of long-term stability in an ecosystem and causes
many human health issues, such as cancer, nausea, and renal failure
(Dil et al., 2017c; Fiyadh et al., 2017). The Zn ion is one the most
disposed HMs from various industries and causes many hazardous
problems to nature (Shanmugaprakash et al.,, 2018; Yildiz, 2017).
Meanwhile, Cr(Ill) and Cr(VI) ions can harm aquatic life after a
certain range (Ashan et al., 2017; Timer and Edebali, 2019). In the
case of As, Co, Hg, Fe, and Mn, interest among environmental sci-
entists has declined, as displayed in Fig. 4, despite their high
toxicity to the ecosystem. As(Ill) is more harmful than As(V), and
both revealed toxicity in terms of various human health problems
(e.g., melanosis, edema, keratosis, cancer, enlargement of liver,
kidney, and spleen problems). Hence, WHO does not recommend
their use of above 10 mg/L concentration (Gnanasangeetha and
SaralaThambavani, 2014; Mandal et al., 2014a). Despite the great
link of By, vitamin with Co, it leads to neurotoxicological disorders
due to the high affinity of various chemical reactions that increase
the degree of toxicity (Dil et al., 2017a; Hymavathi and Prabhakar,
2017; Khajeh et al., 2013). The inclination of Hg ions may lead to
severe long-term ecosystem issues, as reported in the priority list of
pollutants by the USEPA and the European Union (Cao et al., 2017;
Elektorowicz and Qasaimeh, 2004). Industrial effluents consider-
ably contribute to the release of Fe into water bodies. These efflu-
ents may alter the taste and condition of water, stain clothes, and

weaken plumbing fixtures, rather than raise major health issues
(Aya et al., 2016; Oguz, 2014). Mn is important for the structure and
qualitative function of cell enzymes in controlling various meta-
bolic activities within the range decided by WHO (Aya et al., 2016;
Khajeh et al., 2013). Fig. 4 illustrates that Sb and Ce are the least
important HMs for removal studies. Majority of the reviewed study
worked in group of HMs removal by single treatment method.
These HMs affect soil microbial activity, leading to the alteration of
crop yield (Zhu et al., 2018). Furthermore, the accessibility of Sb and
Ce increased in the environment due to mining and smelting pro-
cesses in recent years (Aydin et al., 2010; Dar et al., 2012; He et al,,
2012). Therefore, various treatment techniques play an important
role in protecting the environment from the toxic HMs in water or
wastewater; these techniques are categorized in Fig. 1. Various
types of sorption materials, such as indigenous (IM) and modified
indigenous materials (MIM) for different HM removal processes,
have been extensively applied; these materials are presented in
Fig. 6 to elucidate their application percentage in each category of
treatment technique.

3.1. Biosorption process

The biosorption technique has received considerable critical
attention. Biosorption is an indigenous way of protecting the
environment with less effort. The application of different bacteria,
such as Mucor rouxii, revealed collective resistance to Pb, Cd, Ni, and
Zn (Yan et al., 2000). Vibrio parahaemolyticus has a high resistance
capacity in different contaminations and exhibits a promising
sorption of Hg(Il) ions (Jafari and Jafari, 2014), The Trichoderma
viride species plays a vital role in Cd(II) removal (Hlihor et al., 2015).
The immobilized Bacillus subtilis bead demonstrates a high capacity
for Cd ion removal (Ahmad et al., 2014; Ahmad and Haydar, 2016),
and the details of bacteriological remediation are presented in
Tables 2—6 The sunburst chart typically illustrates that the natural
use of biosorbent materials is approximately 80%, as shown in
Fig. 6. Therefore, further research should be conducted to under-
stand the potential of HM sorption and sorbent regeneration by

Treatment
Techniques

for HMs
removal

Fig. 6. Sunburst chart of Treatment techniques with indigenous material (IM) and
modified indigenous material (MIM).

Please cite this article as: Bhagat, S.K et al., Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art,
application assessment and possible future research, Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2019.119473




28 S.K. Bhagat et al. / Journal of Cleaner Production xxx (XXXx) XXx

modifying the IMs, as reported by research on modification (Ahmad
et al,, 2014; Ahmad and Haydar, 2016; Khandanlou et al., 2016).
Another example of modified biosorbents demonstrated 98.31%
As(Il) removal (Gnanasangeetha and SaralaThambavani, 2014).
However, Cu ion removal also increased due to the addition of so-
dium dodecyl sulfate (SDS) as a surface-active agent for the bio-
sorbent material (Abdulhussein and Alwared, 2019). In the case of
Cd removal, modified seafood waste and engineered nanoparticles
enhance the sorptive capacity of the biosorbent (Lee and Davis,
2001; Rossi et al., 2019). Both studies on Mn removal showed an
improved performance when chemicals, such as chelating and
complexing agents, were used (Ferreira et al., 2019; Khajeh et al.,
2013).

3.2. Adsorption process

The adsorption process is common in HM removal techniques
and characterized by the use of IMs or MIMs. During the past 20
years, many applications of natural materials, either direct or
modified, as an adsorbent have been studied. In the composition of
the biosorption process, the MIM applied was approximately 70%
higher than the IM to enhance the efficiency of sorption potential
(Fig. 6). However, complications in the adsorbents’ surface struc-
ture were observed, increasing the cost of and the time required by
the process and requiring skilled supervision (Debnath et al., 2016;
Mandal et al., 2014b; Ramazanpour Esfahani et al., 2014; Tiimer and
Edebali, 2019). These demands may require further studies to
address the complication of the treatment method. This process
should focus on IM adsorption studies to minimize cost and time,
e.g., the simplification of the process for Cu(Il) ion removal and the
grouping of Pb(II), Cd(II), Ni(II) ion removal (Kabuba et al., 2014;
Reynel-Avila et al.,, 2014). Clinoptilolite materials exhibited the
most promise as adsorbent, with minimal effort to remove Pb(II)
(May Tzuc et al., 2018) and Cu(Il) (Turan and Ozgonenel, 2013). In
addition, ignimbrite and hematite ores demonstrated a promising
result for Fe and Cd removal, respectively (Oguz, 2014; Singh et al.,
2006). Some studies demonstrated the promising result of mining
products and HM concentration drainage (Rooki et al., 2011; Turan
et al., 2011b). The recent trends for adsorbent selection, such as
modified membrane (ELMB), CNT or modified CNT, clinoptilolite or
modified clinoptilolite, and chitosan or modified chitosan, are
increasing due to its potential for HM removal (Allahkarami et al.,
2017; Debnath et al., 2016; Esmaeili and Khoshnevisan, 2016;
Kavosi Rakati et al., 2019). Tovar-Goémez et al. (2013) also re-
ported that BCM has a higher adsorption capacity compared with
BCB because it has more hydroxyl groups. Cu(Il) ion reportedly has
a higher adsorption capacity compared with Cd(II), Ni(Il), Zn(II),
and Cu(Il) ions onto biochar (Moreno-Pérez et al., 2018). The tea
waste adsorbent Co metal exhibited a higher percentage in adsor-
bate compared with the Mn metal (Khajeh et al., 2013). Lee and
Scholz (2006) showed that Ni exhibits a higher tolerance against
salt compared with Cu in wetland soil. All details can be found in
Tables 2—6.

3.3. Ultrafiltration (UF) process

UF is an important treatment technique in wastewater engi-
neering and plays a key role in HM removal. In the past two de-
cades, various UFs and improved UFs have been applied to remove
different HMs or HM mixtures. Micellar-enhanced ultrafiltration
(MEUF) is recognized as a promising HM removal technique. MEUF
was applied thrice for Pb ion removal, and the process was
explained explicitly, that is, SDS was used as an anionic surfactant
to alleviate the power of MEUF in terms of ion exchange
(Rahmanian et al., 2012). As soon as the surface of MEUF interacted

with the pollutant, the surfactant monomers were converted into
micelles through combination; then, micelles lubricated the
organic particles or bound the metal ions on the surface of the
oppositely charged micelle through electrostatic approaches to
remove HMs (Jana et al,, 2018; Rahmanian et al.,, 2011a). The S/M
and L/M ratios of MEUF were demonstrated well on Zn removal
(Rahmanian et al., 2011; Rahmanian et al., 2011b). Nine compre-
hensive studies were reviewed to enumerate the soil retention and
filtration capability along with various soil properties due to either
runoff or mining drainage issues throughout the world (i.e., Spain,
Germany, Iran, Taiwan, China, and Bangladesh). In Spain, Fe, S, Cr,
Cu, and Pb showed a positive relation with humified OM and he-
matite (Gonzalez Costa et al., 2017; Kemper and Sommer, 2002). In
Germany, Cu and Zn demonstrated a high affinity with soil reten-
tion capacity during water flow (Anagu et al., 2009). In Iran, Ni, Fe,
Mn, Cu, Pb, and Fe were detected due to AMD activity (Aryafar et al.,
2012; Gholami et al., 2011). However, these high metal concentra-
tions have been explained a decade ago by (Yu et al., 2001) who
reported that Fe oxide and the carbonates of soil have a promising
binding ability, followed by Mn oxide. In China, the presence of Cd
with Fe oxide revealed by Xia et al. (2007) and the order of
Zn > Pb > Cu > Ni in terms of amount presented by Wang et al.
(2015), they also explained that Zn and Pb may be due to auto-
mobiles (ships), coal combustion, and flue gas deposition, whereas
Cu and Ni availability can be attributed to anthropology activity.
Recently, various toxic metals have been determined in Bangladesh
where the concentrations of Pb, Cd, Cr, Cu, Hg, Al, Ni, Co, Zn, and Mn
in water and Pb, Cu, Al, Ni, Co, Zn, and Mn in sediment exceeded the
acceptable range, especially after monsoon, thereby altering the
ecosystem (Bhuyan and Bakar, 2017). The details are presented in
Tables 2—6.

3.4. Other processes

Over the last decade, a few studies have been conducted to find
alternate options for HM removal to overcome the general issues of
the conventional treatment process. The electrocoagulation
approach exhibited potential for Cr and Cu removal from aqueous
solutions (Aber et al., 2009; Bhatti et al.,, 2011). Sabonian and
Behnajady (2014) proposed a photocatalytic process to remove Cr
ions from a solution. Floatation and leaching techniques were
applied to remove the mixture of ash and sulphur with good
sorption efficiency (Vasseghian et al., 2014). Nano filter tools were
used for the removal of HM combinations (i.e., As, Cr, and Cd),
demonstrating the potential capability of filters (Okhovat and
Mousavi, 2012). Recently, two intensive works were conducted to
evaluate the efficiency of the ion flotation technique for Ni and Zn
ion removal and yielded encouraging results (Hoseinian et al., 2017;
Sadat Hoseinian et al., 2019). Sekulic¢ et al. (2019) applied microfilter
treatment for a group of HMs (i.e., Zn, Pb, and Cd) with molar
characteristics to enhance the filtration capacity. However, with a
limited number of studies, these types of HM removal techniques
are expensive and time consuming and require a standard pro-
cedure and skilled supervision. Therefore, further research must be
conducted to find additional alternative options that are compa-
rable to conventional approaches. The details are presented in
Tables 2—6.

4. Research assessment, evaluation, and prospective research
possibilities

Although all Al models can be used to optimize and simulate HM
removal techniques successfully, the selection of optimization and
predictive models for individual HM removal techniques is highly
essential. Many of the reviewed papers explained in detail how
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these two characteristics help obtain a high modeling performance.
In most of the reviewed works, MATLAB software was used to
design the Al models. In general, 45—55 observations were used to
build the model. The following subsections summarize the critical
points observed in the reviewed works.

4.1. Superiority of Al models

The application of each Al model is illustrated in Fig. 3, which
shows the selection and value of each model among respected re-
searchers. This figure also reveals the gap which would be the
prospective models (less used models) for future research to have
more conceptual understanding the building process of Al to ach-
ieve high performance. ANN as a predictive model for HM removal
from aqueous solutions has been conducted by most researchers
for improved generalization, optimization, and prediction of HM
treatment techniques (Fig. 3). Fig. 8 illustrates the relevant models
used for each HM, indicating the importance of each model among
the researchers. In general, ANN reported the importance and
consequence of both sorbent and sorbate characteristics of the
metal sorption along with its kinetics and isotherms. Training and
testing processes were used to address the number of hidden layers
by minimizing the error (Altowayti et al., 2019); the number of
hidden layers was selected by trial and error to design the best NN
structure (Fiyadh et al., 2017; Mandal et al., 2014b). In most cases
where the ANN model was used, 10 or approximately 10 hidden
layers exhibited the lowest MSE value, including the breakthrough
curve and the coefficient of adsorption isotherm model as output.
In most cases, relevant input variables were optimized using the
RSM model; then, ANN was used for prediction. In addition, the
prediction values of RSM and ANN were compared. ANN was found
superior to RSM with respect to predictability performance. In most
works, the RSM model used CCD, FFD, and BBD for simplification in
terms of producing optimized data for the ANN model. The po-
tential of RSM could be increased if it is precisely designed in
accordance with the experimental design parameters. In most
cases, the BP and LM algorithms suited the MLP network with 10
neurons allocated for the hidden layers to build an improved pre-
dictive model. Overall, ANN shows a marginally lower predictive
error compared with the RSM and MLR models. ANN has also
become a benchmark for developing various Al models.

Despite the numerous capabilities of the ANN model, ANN has
some limitations, such as the need for a large amount of experi-
mental data for training, overfitting, local minima, the selection of
relevant variables, and divergence. ANN also exhibits either incor-
rect prediction or low robustness in the case of wrongly selected
dependent variables, such as the zone of the breakthrough point
and the grouping of HMs. ANN-based model simulation can further
contribute to the further understanding of the dynamic behavior of
the process in which some unfathomable phenomena occur
(Esfandian et al., 2016). Modeling enhancement procedures have
been introduced to overcome the above issues. The isotherm
mathematical equation was used as an additional data producer for
HM removal and was optimized using RSM prior to Al model
implementation. Various hybrid Al models (e.g., ANN-GA, ANN-DE,
ANN-PSO, ANN-DTD, ANN-IPS, and ANN-Coptim) have been
applied to increase the robustness of standalone Al models. The
BFGS optimization function of ANN has been demonstrated as one
of the principal approaches for adjusting the weight and bias of the
network. The IPS and two-fold cross-validation methods are well
known for determining the lowest error of the network and
avoiding the overfitting problem of the network (Anagu et al.,
20009).

However, to overcome these challenges and validate the sug-
gested algorithm’s efficiency, further research must be conducted

for different categories of HM removal techniques. The Mn removal
study conducted by the ELMB adsorbent resulted in R? = 0.76, using
only the ANN and ABCoptim models (Ferreira et al., 2019). Thus, this
is the potential work to use another model to evaluate the better
value of R?.

The fuzzy logic model offers simplification in terms of pattern
understanding between the investigational data and the feedback
by using the linguistic expression to present uncertainties. ANFIS is
known for minimizing the complexity of the mathematical model
for a system (i.e., Mamdani-type and TS-type fuzzy inference sys-
tems). However, in the case of Hg(Il) removal techniques, ANFIS
showed a marginally higher error compared with the other Al
models. Fig. 6 illustrates that the application of the fuzzy model to
different HM removal techniques requires further attention to
assess its performance. Furthermore, the surveyed fuzzy logic
performance for grouping HMs and the breakthrough curve data
for different treatment techniques have not been investigated.

The kernel model is preferred due to its high convergence,
prompt response, minimizing the overfitting phenomenon and
local minima ignorance (Abdulwahab et al., 2019). The Bayesian
regularization method and RBGF are mostly used, but few studies
have applied the hybrid model (i.e., SVM-GA) to highlight the ef-
ficiency of the model. Approaches, such as SLT, SRM, RBGF kernel
function, LOO, and SF, have been used with SVR to improve the
performance of the model compared with different neural net-
works, such as BPNN and GRNN. However, among other models,
SVM has been applied in a limited number of studies (Fig. 3); thus,
SVM and the application of kernel model for various HM treatment
techniques must be investigated in future research. Ni metal pre-
diction had higher accuracy compared with Fe metal prediction
using SVR and BPNN (Gholami et al, 2011). However,
Mn > Zn > Cu > Fe revealed the order of predictive accuracy
(Aryafar et al., 2012).

The important features of evolutionary models include the self-
adjustment of the weight and bias of the neurons, which tend to
minimize the global optimization problem, the auto search of the
algorithm, and robustness against overfitting issues (Salih, 2019;
Salih et al., 2018; Yaseen et al., 2019). GA is increasingly recog-
nized as the best optimizer for input data. GP and PSO are also
alternate options in terms of the nonlinearity of the HM removal
process. GP is used to generate additional data to feed the modeling
for improved performance (Esmaeili and Hashemipour, 2018). Fig. 5
shows that the evolutionary model requires further studies to
assess its performance based on different biosorption and adsorp-
tion processes with the grouping of HMs in a solution.

Recently, various hybrid model applications for different HMs
removal techniques have been observed. ANN outperformed other
Al models after combining with different optimization algorithm to
sort out the optimal range of variables to gain maximum removal
efficiency. The result is promising, exhibiting less network noise
and minimal error. This was observed in another research scope of
environmental engineering (Afan et al., 2016; Fahimi et al., 2016;
Yaseen et al., 2018, 2015). The efficiency of the hybridization of
another Al model must also be validated by using the ANN hybrid
model as a benchmark for future types of HM removal techniques.

The complex biosorption experimental design must focus on
selecting variables, algorithms, and functions to achieve excellent
performance. Mostly, PM showed a marginal difference while
comparing two models for one experimental design. Fig. 5 shows
that the ANN model may be a benchmark for the further
advancement of Al model intervention in the HM removal process.

4.2. Importance of optimization algorithm in Al modeling

In the case of the complicated process of HM removal, the
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construction of Al models depends mainly on three features: a)
nature of the predictors and target data; b) optimization of the
weights, bias, numbers of neurons—nodes and hidden layers of the
processing units; and c) feeding of the model with generalized and
optimized input data (Al-Musawi et al., 2018; Al Sudani et al., 2019).
These features can improve the maximum output value. These
features become more difficult in terms of grouping HMs and de-
rivative variables. The following models could reduce the above
issues:

—

. FFD was highlighted for its S/M, L/M, and pH/flux simplifi-
cation process for Al models (Dil et al., 2017a; Turan et al,,
2011a).

ii. The CSCF technique was used for optimization by improving
the data points between the minimum and maximum
removal efficiency (%) due to its ease of implementation and
to yield a curve that appears to be unified. Moreover, this
technique also ignored the alterations near the first and last
samples by using least squares curve fitting (Turan et al,,
2011a).

iii. The BFGS optimization function of ANN adjusted the weight
and bias of the network successfully in terms of the break-
through curve, equilibrium concentration, and adsorption
capacity parapets as output.

iv. The LOO cross-validation technique was used to estimate the
optimum procedure for the RBGF kernel technique of the
SVM (Aryafar et al., 2012).

v. The trial-and-error method and the optimum SF were uti-
lized to construct the GRNN model and calculate the opti-
mum processing unit of the model (Aryafar et al., 2012)

vi. The IPS and two-fold cross-validation methods were used to
determine the lowest error of the network freely and to avoid
the overfitting problem of ANN, respectively.

vii. The GP-integrated algorithm showed a higher data pattern-
capturing capability for HM removal techniques compared
with LS-SVM (Mandal et al., 2014a).

viii. GA optimization was applied to adjust the noise of the pro-
cessing unit and the predictors. The roulette selection rule,
along with the single-point crossing-over and uniform mu-
tation rules, enhanced the GA optimization power against
various isotherm models.

ix. The OSC approach minimized the variations from predictors.

X. SPA was used to ignore the variable collinearity issues of the
corresponding model.

xi. ERM was performed for the global search to reduce the
standard deviation of the linear model.

xii. The PLS-GA method was applied to construct the QICAR
model for securing the maximum adsorption for many HM
groupings of 25 metals.

Xiil. Igeom was utilized for generalization; however, a higher value
was observed in Igeom compared with that in Igeo (Wang et al.,
2015).

xiv. The PS method was the best method in terms of ignoring the
local minima and the speed of convergence for a feasible
optimizing power.

xv. CSA was applied after using the appropriate kernel function
(RBF) to separate the nonlinear equation from the linear
equation (Lagrange multipliers).

xvi. Single Karush—Kuhn—Tucker conditions were used to mini-
mize the problem of the kernel function and bias parameters
(Parveen et al., 2017b, 2016).

xvii. The parsimony principle was used to overcome the challenge
of SVM model noise.

xviii. DFA was applied in the optimization of input variables in the

groupings of HMs for the BRT, ANN, and RSM models.

4.3. Trend of Al model intervention in HM removal performance

The major advancement of Al modeling was observed in the
implementation of new algorithms, functions, and optimization
techniques to maximize the performance of the model as per the
individual characteristics of the HM removal techniques. Fig. 2 il-
lustrates that the trend of Al model development aids in the HM
treatment techniques over the last 20 years. Fig. 2 shows that in the
last 7 years, the simulation and prediction of targets have attracted
research interest. In 2014 and 2017, research shifted toward SC
contribution to cut the cost, skilled supervision, large space
requirement, and time required by complex HM removal experi-
mental processes. Fig. 8 shows the importance of each model
application in each major HM removal. Figs. 1, 4 and 6 demonstrate
that HM removal process simulation should be developed to un-
derstand various HM treatment techniques in terms of different
HMs and materials used for HM adsorption. In addition, Fig. 6
shows that the reduced MIM of biosorption and reduced IM of
adsorption treatment techniques have been conducted in the past
two decades. However, the UF process tends to be equal in IM and
MIM. Fig. 4 reveals the interest in popular HM selection among the
esteemed researchers, revealing the seriousness of HM (more time
used) and prospective HM (less time used) removal prediction
techniques, which should be tested using different Al models to
explore the reliability of the models as per the target and variables.
Fig. 5 presents the number of studies for each model per year,
illustrating the development of various Al models for HM removal
prediction. Moreover, it reveals how the new model has the same
purpose and how its importance to researchers varies (e.g., ANN
scored maximum times selection in the last decade, followed by
RSM). However, hybrid and other newly developed models have
been applied in recent years for HMs removal prediction.

4.4. Performance matrix used in various Al models with their merits
and demerits

The application of PM was examined to evaluate model per-
formance in terms of the prediction of HM removal efficiency. PM is
the mathematical approach to weighing the quality of various Al
models. Approximately 30 types of PMs, such as R, R?, ME, MSE,
RMSE, SEP, AAD, MAD, F-value, P-value, EF, MRE, RC, ARPE, AARE, r,
E,, intercept and slope, SDR, MAR, MAPE, SD, AE, eM%, ei%, adjusted
R%, MAE, and SSer, have been applied in all the reviewed works.
Fig. 7 shows that 12 out of the 30 PMs have attracted increased
interest from the researchers. Fig. 7 also illustrates that the trend
line of the graph presents an exponential decline in terms of the
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selection of PM by the researchers, where R? was the most selected
in many studies, followed by MSE, RMSE, and RE. AARE, SD, and
MRE were used 13, 10, and 7 times, respectively. AAD, MAPE, and
MAE were applied in six studies, followed by MAD and SEP, which
were used four times each. A total of 18 different PMs was of in-
terest for a specific and limited number of studies, as shown in
Tables 2—6. These PMs were applied many times and compared
with traditional mathematical evaluators, but the selection of the
correct PM is depicted in the model performance.

The presentation of the PM based on the Al model followed by
HM removal techniques may clarify the optimization, simulation,
and prediction performance. ANOVA has also been used many
times to validate the model data, followed by enumerating the
suitability of Al models using the p- and f-values (Dil et al., 2017a).
The following assessments have been evaluated by this study:

i. R or R measures the degree of collinearity of the ANN model
simulation, which is used to achieve the efficiency and
effectiveness of single HM removal. By contrast, other Al and
hybrid models and HM removal experiment combinations
require additional PMs to compare the results of the
reviewed papers. These PMs are sensitive to extreme values
and less sensitive or insensitive to the additional and pro-
portional difference between the model results and the
actual data (Chai and Draxler, 2014; Legates and McCabe,
1999; Moriasi et al., 2007).

ii. MSE and RMSE show the basic features for measuring the
error between the model output and actual data when a
single Al model is applied. RMSE has a marginal sharpness in
the overall calculation process while calculating the perfor-
mance of a specific model. However, they are limited in the
case of the breakthrough curve data produced by a hybrid
model. In recent years, these models have been used with
other newly developed error evaluators, such as QE and TE,
which reveal promise in reporting the performance of the
model, especially in BMU measurement.

iii. Relative error and AARE are mostly applied for combined Al
models (i.e., ANFIS and UF removal techniques). AARE has
been recognized for its high sharpness in terms of overall
evaluation. However, its use with three to four other evalu-
ators indicates low confidence among the researchers.

iv. In general, SD used in case of ANFIS model to measure the
deviation from the mean line in terms of performance of the

model. By contrast, SD has a limitation when used for a single
model.

v. In most cases, MRE is utilized by the ANN model for the
biosorption process (i.e., phytofilter and chitosan) as a sor-
bate and showed promise with either R or R%. However, it has
been evaluated against R? often.

vi. AAD has been mostly utilized for ANN, followed by RSM and
BRT. It measures minute deviation but must compare the
calculation with other evaluators.

vii. MAPE is applied to assess the single to hybrid model per-
formance. It is sensitive with a high variation in the scatter
plot and used with other PMs.

viii. MAE aims to compare the result among other applied PM
matrices. It has potential application for hybrid models to
check the row error at the testing phase (Yaseen et al., 2016).

ix. MAD is based on the row error value for HM removal of the
hybrid model testing phase evaluator. MAD performs better
than the standard deviation in terms of outlier data (Leys
et al,, 2013).

X. SEP is applied in a hybrid model and indigenous adsorbate. If
the bias is low, then the SEP can be performed to evaluate the
calibration and validation processes precisely (Biining-Pfaue,
2003).

In addition, the remaining PMs used the least number of times
in the reviewed works must be applied to HM removal prediction
modeling to assess their precision and reliability.

4.5. Assessment of the treatment techniques

Various treatment techniques have been performed for HM
removal and integrated with computer aids. Biosorption and
adsorption have been applied many times (Fig. 6) with IMs and
MIMs and have been proven to be a low-cost approach. Adsorbent
pretreatment, such as wheat straw pacified with acidic and alkaline
pretreatment, exhibited a good removal result and considerably
promoted Cu(Il) and Cr(VI) adsorption, respectively (Rebouh et al.,
2015). However, Cr comes with low removal percentage during the
treatment of HM combinations. In combined HM removal (i.e., dyes
and HMs), the effects of pH on HM removal and adsorbent dose on
dye removal have been observed (Mazaheri et al., 2017). Most batch
experiments executed for the adsorption process are rather
continuous; therefore, further research on continuous removal
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techniques must be conducted to achieve real wastewater treat-
ment requirements effectively. The modified indigenous bio-
sorption process must focus further on computer aids in the future
to enhance the removal process and promote the cost reduction of
the treatment technique in the case of the indigenous adsorption
process.

The high removal efficiency of HMs has been observed by
membrane filtration, but expensive and membrane fouling, along
with low permeate flux, limit its use. In addition, the difficulties in
building proper Al models with these input and output variables
are increasing. In the polymer assisted ultrafiltration (PAUF) pro-
cess, few studies on the flux decline in the dead-end filtration
process were found. UF requires further investigation to overcome
these challenges. Other expensive HM treatment techniques, such
as nanofilter, microfilter, and electrocoagulation techniques with
high-efficiency and low-cost sorption processes, such as the pho-
tocatalytic process, have been developed. However, these methods
experience some challenges in the proper fitting to Al models and
in the implementation of the experimental process.

In another study, sodium dodecyl sulfate polyethylene glycol
aggregates were adopted to modify the MEUF to enhance the Cu
removal process (Xiarchos et al., 2008). PEG has the advantages of
water solubility and biodegradability. Khajeh et al. (2013) con-
ducted a comparative study of the Mn and Co metal extraction
processes using tea waste adsorbent, where Co showed a better
adsorbate percentage compared with Mn. Two bone chars (i.e.,
BCM and BCB) were utilized to remove the F contamination and
revealed that BCM is superior because it has more hydroxyl groups
(Tovar-Gomez et al., 2013). The treatment of the combination of dye
and HMs from an aqueous solution by using the activated carbon of
a walnut wood shell showed a higher removal rate of HMs
compared with that of dye (Mazaheri et al., 2017). The correlation
analysis indicates that treatment techniques (wetlands) have a high
pH effect in winter and on conductivity in terms of Ni removal.
Meanwhile, in the case of Cu prediction, redox and temperature are
the most effective (Lee and Scholz, 2006). In the case of Cr(VI)
removal, CuONPs showed up to 98% removal under the optimized
condition, such as initial metal concentration, pH, CuONP dose, and
temperature (Mohan et al, 2015). In another study, chicken
feathers showed a promising sorption of Pb and Cd ions (Reynel-
Avila et al., 2014). Fig. 6 typically illustrates that the use of natu-
ral biosorbent materials is significantly higher. Therefore, further
research should be conducted to improve the understanding on the
HM sorption and regeneration potential (using 0.1 M HCI) of sor-
bents by modifying IMs, as exhibited by some of the modified
works (Ahmad et al., 2014; Ahmad and Haydar, 2016; Khandanlou
et al., 2016). Another example of modified biosorbent demon-
strated 98.31% As(Il) removal (Gnanasangeetha and
SaralaThambavani, 2014). Moreover, the Cu ion removal also
increased due to the addition of SDS as a surface-active agent to the
biosorbent material (Abdulhussein and Alwared, 2019). In the case
of Cd removal, modified seafood waste and engineered nano-
particles also enhance the sorptive capacity of the biosorbent (Lee
and Davis, 2001; Rossi et al., 2019). Two studies on Mn removal
reported an improved performance in the case of adding chemicals,
such as chelating and complexing agents (Ferreira et al., 2019;
Khajeh et al., 2013).

Each experimental design revealed different efficiencies in
terms of the specific HM removal process. The following critical
assessments were observed:

i. Physical, chemical, and biological parameters have a
remarkable effect on the treatment process, but only few of
the reviewed works presented actual wastewater treatment.
Therefore, in future works, the experimental design’s

ii.

iii.

Vi.

Vii.

viii.

ix.

Xi.

Xii.

xiii.

Xiv.

efficiency must be verified with actual wastewater. Majority
of the cases revealed that pH 5 is one of the most sensitive
predictors to achieve a process with high efficiency.

The Cr(VI) removal by the biosorption process needs CaCl,
pretreatment to reduce the effect of pH prior to estimation
and then followed by simulation process by using BBD of
RSM to achieve the substantial improvement of removal and
accuracy of prediction (Cobas et al., 2014).

In another study, Ronda et al. (2015) addressed Pb(II) ion
adsorption onto chemically treated (with HNO3, H,SO4 and
NaOH) and untreated OS. Their result demonstrated that the
treatment using this three chemically treated OS sorption
was good.

. Given that HM selection greatly affects the treatment design

and simulation mode, a standard criterion for selecting the
valance of HMs should be set for researchers in terms of the
feasibility of industrial wastewater treatment (Yetilmezsoy
and Demirel, 2008).

. The assessment of the binding strength between HMs and

OM has been studied and reported that Cr bound to Fe ox-
ides, Zn bound to OM, Pb bound to carbonates, and Cu bound
to either OM or Fe oxides were stronger than three HMs,
namely, Co, Ni, and Mn.

Other binary combinations, such as carbonates bound to Ni
and Cr, Fe oxides bound to Ni and Cr, and Mn oxides bound to
Cu and Cr, have been mentioned (Yu et al., 2001). HM
adsorption has a particular affinity toward specifically
adsorbed bed configuration (Hernandez-Hernandez et al,,
2017).

The binding behavior requires further research to enhance
removal process efficiency.

Mn removal is often observed in HM mixtures. Thus, Mn
removal must be examined alone to understand the
nonlinear behavior of Mn.

To the best of the authors’ knowledge, the removal of the
combination of As(II), Cu(lll), Pb(IV), and Cr(V) and simula-
tion models require further investigation because the mix-
tures of these HMs are the typical effluents of different
industries (Aziz et al., 2008; Li et al., 2007; Papandreou et al.,
2011).

. Research on desorption or adsorbent regeneration must be

conducted to develop reusable techniques.

The changes in a model (hybridization), in an adsorbent (by
combining two adsorbents in a specific ratio/modified
product), and in HMs (a combination of different HMs/
combination of different ions of the same HM/HM pretreat-
ment) must focused on in future research.

The oscillatory trend of adsorption process parameters must
improve the model to improve the residual plots (Gomez-
Gonzalez et al., 2016).

A few studies based on the nonlinear relationship between
the properties of sorbent and sorbate have been conducted
for HM ion removal. The acidic functional group, the lignin
composition of tested biomasses, and pollutant molecular
characteristics affect HM sorption (Mendoza-Castillo et al.,
2014). Therefore, additional sorbent and sorbate character-
istics must be studied.

In another removal process, Sekuli¢ et al. (2019) applied
microfilter treatment for a group of HMs (i.e., Zn, Pb, and Cd)
with molar characteristics to enhance the capacity of filtra-
tion. However, with a limited number of studies, these types
of HM removal techniques are expensive and time
consuming and require a standard procedure and skilled
supervision. Therefore, effort must be exerted to find alter-
native options to overcome these issues.
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xv. Only one study focused on 25 HMs to reveal real-time pro-
cess challenges that can be replicated by minimizing the
listed challenges during the selection of HMs and other
research variables; in this manner, the understanding of the
nonlinear relationship between the HMs was enhanced
(Salahinejad and Zolfonoun, 2018).

5. Conclusion

The current research reviewed all research papers on HM
removal modeling using soft computing methodologies from 2000
to 2019. The main objective of the current research was to provide
an integrated viewpoint of various Al models to help experts in
decision making and guide researchers who want to contribute to
this area. The reviewed works were categorized in accordance with
the commonly applied predictive models and subclassified in
accordance with the specific HM removal targets, and majority of
the reviewed works reported that pioneering or hybrid models
outperformed classical ones. This review indicated that several key
topics on Al methodologies have yet to be applied to HM removal
prediction. These topics included different ANN algorithms, deep
learning, unsupervised methods, various metaheuristics, and
ensemble models. Furthermore, the ANN for various HM removal
prediction techniques is excellent but selecting a single method as
the best remains challenging. In addition to the AI models
reviewed, single HM removal technique was adopted more
frequently than multiple HM prediction techniques in rivers. In
terms of the HM removal process, three major categories, namely,
biosorption, adsorption, and UF, were recognized. The effect of
multiple HMs and the adsorbent characteristics on the HM removal
process was not reported comprehensively. Although several
measures were used (such as EDA) to determine the prediction
accuracy, analyzing the merits and demerits of each applied mea-
sure in terms of the nature of the prediction issue could still be an
area of prospective research. Most of the reviewed works consid-
ered the data of the aqueous solution of HMs. However, real
wastewater with the actual presence of various contaminants (i.e.,
combination of HMs and synthetic organic carbon) with high-
accuracy HM prediction is an interesting research direction. In
some of the cases, the pretreatment techniques of the HM removal
process increased the removal accuracy along with the prediction
value of the Al models after few remarkable EDA processes. How-
ever, the same cannot be said for the combination of contamination
(i.e., for real wastewater and different adsorbent characteristics).
Therefore, additional accurate models for HM prediction must be
cultivated with various valued EDA steps, and the full potential of
different Al algorithms must be utilized in this field.
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Abbreviation

Absolute error (AE), Absolute percent error (APE), Absolute

relative percentage error (ARPE), Acid mine drainage (AMD),
Adjusted coefficient of determination (adjusted R2), Alginate-based

composite bead (ABCB), Artificial bee colony optimization
(ABCoptim), Average Absolute Deviation (AAD), Average absolute
percent relative error (AAPRE), Average absolute relative error
(AARE), Adaptive neural fuzzy interference (ANFIS), Average
percent relative error (APRE), Average relative error (ARE); Back
propagation neural network (BPNN), Batch Back Propagation (BBP),
Batch gradient descent (BGD), Batch gradient descent with mo-
mentum (BGDM), Best-matching unit (BMU), Boosted regression
trees (BRT), Box-Behnken (BB), Box-behnken Design (BBD), Broy-
den—Fletcher—Goldfarb—Shanno (BFGS); Carboxylate-
functionalized walnut shell (CFWS), Cascade forward neural
network (Cascade), Charge coupled device (CCD)/Center composite
design (CCD), chi square (2), Coefficient of determination of cali-
bration (r2c), Coefficient of determination of prediction (r2p), Co-
efficient of determination/Regression coefficient/R-square (R2),
Coefficient of efficiency (CE), Concordance correlation coefficient
(CCC), Coupled simulated annealing (CSA), Cubic spline curve
fitting (CSCF), Cubic spline curve fitting technique (CSCFT); Defat-
ted Pongamia oil cake (DPOC), Design of experiment (DOE), Desir-
ability function approach (DFA), Differential evolution optimization
(DEO); Electrolyte concentration (CNaCl), Elman neural network
(Elman), Enhanced replacement method (ERM), Enhanced
replacement method—orthogonal signal correction—partial least
squares (ERM—OSC—PLS), Evolutionary algorithm (EA), explanatory
data analysis (EDA); Feed forward back propagation (FFBP), Feed
forward back propagation neural network with distributed time
delay (FFBP-DTD), Feed forward neural networks (FFNN), Fisher
test (F-test), Fletcher—Reeves conjugate gradient backpropagation
(FRCGBP), Fractional factorial design/Full factorial design (FFD);
General regression neural network (GRNN), Genetic algorithm
(GA), Gradient descent (GD), Group method data handling (GMDH);
Implicit finite difference method (IFDM), Incremental Back Propa-
gation (IBP), Index of model performance (dr); Least square curve
fitting (LSCF), Leave many-out cross-validated coefficient of deter-
mination (Q2lmo), Leave one-out cross-validated coefficient of
determination (Q2loo), Levenberg-Marquardt (LM), Levenberg-
Marquardt back propagation (LMBP), Ligand—zinc ratios (L/M);
Mean absolute deviations (MAD), Mean Absolute Error (MAE),
Mean absolute percent error (MAPE), Mean error (ME), Mean
modeling errors (eM, %), Mean absolute scaled error (MASE), Mean
relative error (MRE), Mean square error (MSE), Median absolute
error (MEDAE), Micellar-enhanced ultrafiltration (MEUF), Modeling
efficiency (EF), Modified geo-accumulation index (Igeom), Modular
neural network (MNN), Multi-layer perceptron (MLP), Multiple
linear regression (MLR or MnLR), Multiple Regressions Analysis
(MRA); Nano filtration (NF), Nash-Sutcliffe coefficient (N-—S),
Network prediction (r), Network/genetic algorithm (GANN),
Nonlinear multi-variable regression (MNLR), Normalized bias (NB),
Normalized root mean square error (NRMSE); One step secant
backpropagation (OSSBP), Organic matter (OM), Pattern search
(PS), Partial least squares (PLS), Partial least-square regression
(PLSR), Pearson correlation coefficients (PCC), Pearson product-
moment correlation coefficient Or Correlation coefficient (R), Per-
formance matrix (PM), Polak—Ribi’ere conjugate gradient back-
propagation (PCGBP), Polyaromatic hydrocarbons (PAHs), Polymer
assisted ultrafiltration (PAUF), Polynomial neural network (PNN),
Powell—Beale conjugate gradient backpropagation (PCGBP); Prin-
cipal component analysis (PCA), Quantitative ion
character—activity relationships (QICAR), Quantization error (QE),
Quasi-Newton backpropagation (QNBP), Quick propagation(QP), 12
metrics (rm2); Radial basis function (RBF), Regression coefficient
(RC), Relative error/Residual error (Er or RE)/percentage error (Er),
Relative root mean square error (RRMSE), Residuals analyses (RE),
Resilient backpropagation (RP/Rprop), Response surface method-
ology (RSM), Root mean square error (RMSE), Root mean square
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error of calibration (RMSEC), Root mean square error of prediction
(RMSEP), Root-mean-square error of cross-validation (RMSECV);
Scaled conjugate gradient backpropagation (SCGBP), Self-
organizing map (SOM), Simulated annealing (SA), Sodium dodecyl
sulfate (SDS), Standard deviation (SD), Standard Deviation (o),
Standard deviation error (STD), Standard error of prediction (SEP),
Standard error of prediction (SEP), Standard squared error (SSE),
Statistical learning theory (SLT), Structural risk minimization
(SRM), Successive projection algorithm (SPA), Sum of squared er-
rors (SSer), Support Vector Regression (SVR), Surfactant to metal
molar ratio (S/M); Tannin-aniline formaldehyde (TAFA), Topo-
graphic error (TE), Trans membrane pressure (TMP), Trans-
membrane pressure (TMP); United States Environmental
Protection Agency (USEPA), Unsteady of advection-dispersion
adsorption equation (UADAE); Variable learning rate back-
propagation (VLRBP); Zeolite prepared from fly ash (ZFA).
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