

ISLAMIC REPUBLIC OF AFGHANISTAN

WATER WELL PUMPING REPORT OF KHODADADI'S WATER WELL

(DRINKING WATER SUPPLY SYSTEM IMPROVEMENT PROJECT IN BARCHI AREA OF KABUL CITY, AFGHANISTAN)

Date: January 06, 2021

Contractor:

Consultant:

Prepared by:

PAMIR GEOTECHNICAL SERVICES COMPANY

Office phone:	+93 20 250 1556
Cell Phone:	+93 77 572 9165
	+93 79 797 4288
Email:	Pamir.geotechnical@

mail: Pamir.geotechnical@gmail.com info@pgs.af

Table of Contents

1	I	NTRO	DDUCTION	1
2	P	ROJI	ECT OBJECTIVES	1
3	W	VELL	LOCATION	1
4	А	QUII	FER PUMPING TESTS	2
	4.1	Stei	P DRAWDOWN PUMPING TEST	2
	4.2	CON	ISTANT PUMPING TEST	2
	4.3	Rec	OVERY TEST	2
	4.4	SUM	IMARY OF WATER WELL PUMPING TEST RESULTS	2
	4.5	Spec	CIFIC YIELD	3
	4.6	Aqu	JIFER CHARACTERISTICS	3
	4.	6.1	Transmissivity	4
	4.	6.2	Hydraulic Conductivity	5
	4.	6.3	Storativity	5

Appendix A) Water Well Pumping Test Forms Appendix B) Photograph

1 Introduction

This report presents the interpretation of pumping test results which preformed for Khodadadi's Water Well.

In this stage Pamir has conducted pumping test on well to determine the borehole efficiency and to quantify aquifer characteristics, such as transmissivity, hydraulic conductivity, and storativity. The procedure include constant and recovery tests.

Pumping tests were carried out to establish the geological and hydrogeological characteristics of the aquifers. Constant pumping and recovery test have been conducted on one well which are located in Barchi area.

2 Project Objectives

The main objectives of this pumping test are to evaluate the existing aquifer(s) capacity for sustainable water supply in the project area. For this purpose, Khodadadi's well was pump tested within the project area.

3 Well Location

Khodadadi well is located behind the Bahar Sarab Business Center in district 13th, Kabul, Afghanistan. The coordinate is Lat: 34.49881382, Long: 69.07115115.

Figure 1 Location of pump test water well

4 Aquifer Pumping Tests

Pumping tests were carried out to establish the geological and hydrogeological characteristics of the aquifer. For subject project, step test, pumping test and recovery test have been conducted on the well. Based on conducted pumping tests the aquifer parameters such as hydraulic conductivity, transmissivity, and storativity of aquifer has been determined.

4.1 Step Drawdown Pumping Test

This test proceeds through a sequence of constant-rate a control well to determine well performance characteristics such as well loss and well efficiency. Step test are designed to establish the short-term relationship between yield and drawdown for the well being tested. It consists of pumping the well in a series of steps, each at a different discharge rate, usually with the rate increasing with each step. The final step should approach the estimated maximum yield of the well.

4.2 Constant Pumping Test

In this test it is necessary to maintain pumping at the control well at a constant rate. This is the most commonly used pumping test method for obtaining estimates of aquifer properties. This test is carried out by pumping at a constant rate for a much longer period of time than the step test, and primarily designed to provide information on the hydraulic characteristics of the aquifer.

A constant pumping test was performed for proposed existing well to determine the characteristics of aquifer and the test continued until the dynamic water level reach to steady state.

4.3 Recovery Test

This test use water level (residual drawdown) measurements after the termination of pumping. Although often interpreted separately, a recovery test is an integral part of any pumping test. Recovery test is preformed out after pump is shut off.

4.4 Summary of Water Well Pumping Test results

Step drawdown pumping test were performed in this well with 10 lps (Step 1) discharge rate at 120 minutes then increased to 12 lps (Step 2) discharge rate at 120 minutes. Since pumping start water level reached from 57.35 to 176.40 meter with 119.05-meter drawdown after 4 hours in step 2, water well have been drying and muddy water pumped. Hence, the constant

pumping test with 6 lps discharge rate were performed at 24 hours pumping and water level reach to steady state from 57.35 to 92.40 meter with 35.05-meter drawdown.

Step Drawdown Pumping, lps		Constant pumping,	Drawdown, m	Well depth,	Well dia.	Casing/ screen	Screened thickness,	Pump Position,	Drop Pipe
Step1	Step2	lps		m		dia.	m	m	Dia.
10	12	6	35.05	200	16 in.	10 in.	45 (acc. Log)	185	4 in.

 Table 1 Summary of Water Well Pumping Test Results and Well Specification

4.5 Specific Yield

This is a crude indication of the efficiency of the well as an engineered structure, and is calculated by dividing the discharge rate (m^3/day) by the total drawdown. High specific yields generally indicate high transmissivities, low specific yield the opposite.

Table	2	Pump	Test	Results

Sr. No ·	Well Name	Depth of Well (m)	Discharge, Q (lps)	Discharge, Q (m³/day)	Static Water Level, SWL (m)	Dynamic Water Level, DWL (m)	Drawdown, Sw (m)	Specific Yield of Well, Sy (m ² /day)				
1	Khodadadi	200	6	518.4	57.35	92.40	35.05	14.79				
Spe	Specific Yield, Sy=Q/Sw = 518.4/35.05=14.79 m ² /d											

4.6 Aquifer Characteristics

Hydraulic properties of the formation intersected by a well can be estimated from single-well tests by a curve-matching approach that fits an analytical solution to time-drawdown data of pumping tests. Numerous analytical solutions exist and are derived from the application of simplifying assumptions to Darcy's law. Hydraulic properties, such as transmissivity and storativity, are fitting parameters used to match the analytical solution to plots of drawdown against time. Type-curve method, such as Papadopulos–Cooper (1967), match an analytical solution to plots of drawdown against time.

Transmissivity (T), hydraulic conductivity (K) and storativity (S) were calculated by theoretical Papadopulos–Cooper-type curve's method in this program based on the pump well data for well.

	•			•	v							
Sr.	Well	Q	$\mathbf{S}_{\mathbf{W}}$	t	F(uw,a)	Uw	r ² ew	r ² c	α	K	Т	S
No.	Name	(m ³ /d)	(m)	(d)			(m ²)	(m ²)		(m/d)	(m ² /d)	
1	Khodadadi	518.4	22.5	0.0010	10	10-4	0.0413	0.0161	10-3	0.61	18.34	2.84*10-4

Table 3 Aquifer Characteristics' Summary of Calculation for Khodadadi Well

Figure 2 Matching of observed time-drawdown curve with theoretical Papadopulos–Cooper-type curve for the Khodadadi's Well

4.6.1 Transmissivity

This is the rate of flow of water under a unit hydraulic gradient through a cross-section of unit width across the entire saturated section of an aquifer.

Transmissivity is a measure of the capability of the aquifer to transmit groundwater through a one-meter-wide band over its full depth, under a one meter or unit gradient. The units of transmissivity are $m^3/day/meter$, which simplifies to m^2/day . Transmissivity is equivalent to hydraulic conductivity multiplied by the aquifer thickness. Aquifer transmissivity is most easily determined from aquifer pumping tests.

- Transmissivity given Papadopulos-Cooper's method by

$$KD = \frac{Q}{4\pi S_w} F(u_w, \alpha)$$

Where

T=KD= transmissivity in m²/day Q= pumping discharge rate in m³/day S_w = drawdown in m

 $F(u_w, \alpha)$ = Papadopulos-Cooper's curve function

Note: $F(u_w, \alpha)$, $1/u_w$, s_w and t have been arbitrary selected based on superimpose the data curve on the type curve at match point (blue dot) coordinates on below graphs. Coordinates of match points have been presented in table 3. Thus,

$$KD = \frac{518.4}{4 \times 3.14 \times 22.5} \times 10 = 18.34 \, m^2/d$$

4.6.2 Hydraulic Conductivity

Hydraulic conductivity is a fundamental parameter that governs the flow of liquids such as groundwater through aquifers and permeable geological layers. Specifically, hydraulic conductivity is a quantitative measure of the capacity of a geological formation or other porous media to transmit a specific fluid. It is determined by the characteristics of both the porous medium and the fluid of interest. The hydraulic conductivity of aquifer is determined based analyzing of pumping test results.

- Hydraulic conductivity given by

$$K = \frac{T}{D}$$

Where

K= hydraulic conductivity in m/day

T= transmissivity in m²/day

D= aquifer thickness in m (given 30m according to geophysical study report) Thus,

$$K = \frac{18.34}{30} = 0.61 \, m/d$$

4.6.3 Storativity

The storativity of a confined aquifer is defined as the volume of water released from storage per unit surface area of the aquifer per unit decline in hydraulic head. Storativity is also known by the term storage coefficient.

- In a confined aquifer, storativity is defined according to Papadopulos Cooper's method as

$$S = \frac{u_w}{r_{ew}^2} 4KDt$$

Or by other way $S = \frac{r_c^2}{r_{ew}^2} \alpha$

Where

S= Storativity in dimensionless

 r_{ew} = radius of well (0.4064/2=0.2032m)

*r*_c=radius of casing (0.254/2=0.127m)

thus,

method 1:
$$S = \frac{0.0001}{0.0413} \times 4 \times 18.34 \times 0.0010 = 1.78 \times 10^{-4}$$

method 2: $S = \frac{0.0161}{0.0413} \times 0.001 = 3.90 \times 10^{-4}$

Hence, average Storativity

$$S = \frac{(1.78 \times 10^{-4}) + (3.90 \times 10^{-4})}{2} = 2.84 \times 10^{-4}$$

Reference:

- American Water Works Association, 2006, AWWA Standards for Water Wells (AWWA A100 – 06)
- Analysis and Evaluation of Pumping Test Data 2nd edition, G.P. Kruseman and N.A. de Ridder, 2000
- 3. Ground Water and Wells, Fletcher Driscoll, Johnson Division, 1986.
- USACE-AED Design Requirements: Well Pump & Well Design, for Various Locations, Afghanistan. February 2012, Version 2.1.

WATER WELL PUMPING TEST FORMS

	PAMIR GEOTECHNICAL SERVICES COMPANY											
			STEP DRAV	VDOWN PUMPING 1	EST							
Project:	DRINKING WA	ATER SUPPLY	Y S YS TEM I	MPROVEMENT PROJ	ECT IN BARC	HI AREA OF KABUL (CITY, AFG					
Site:	Kho	dadadi Well	-	Coordinate:	Lat: 34	49881382, Long: 69.	07115115					
Well Depth ((m):	200	Pump Posi	tion (m):	185	Pump Type:	Submersible					
Static Water	r Level (m):	57.35	Casing/Sci	reen Type:	Steel - 10 in	Screen Position (m)	uknown					
Dynamic Wa	ater Level (m):	176.40	Height of N	Aeasuring Point (m):	0.5	Measuring with Water	Level Indicator					
Drawdown (n	n):	119.05	Discharge	Rate (lps):	10	Start Date:	01.01.2021					
Time	Elapsed Time (min)	Depth (m	to Water bmp)	Drawdown (m)	Q (lps)	Comments						
		-		STEP 1	-	1						
10:10 AM	0	92	2.40	35.05	10							
	1	93	3.50	36.15	"							
	2	95	5.57	38.22	"							
	3	90	5.78	39.43	"							
	4	9	7.46	40.11	"							
	5	98	8.32	40.97	"							
	6	98	8.48	41.13	"							
	7	98	8.58	41.23								
	8	98	8.0/	41.32								
	9	98.82		41.4/								
	10	99.03		41.08								
	11	99.42		42.07								
	12	10	0.56	42.49								
	13	10	0.30	45.21	"							
	15	10	3.73	46.38	"							
	16	10	4.20	46.85	"							
	17	10	5.20	47.85	"							
	18	10	5.97	48.62	"							
	19	10	6.56	49.21	"							
	20	10	7.08	49.73	"							
	22	10	7.56	50.21	"							
	24	10	8.30	50.95	"							
	26	10	8.68	51.33	"							
	28	10	8.89	51.54	"							
	30	10	9.06	51.71	"							
	35	10	9.40	52.05	"							
	40	11	0.37	53.02	"							
	45	11	0.87	53.52	"							
	50	11	1.08	53.73	"							
	55	11	1.22	53.87	"							
	60	11	1.43	54.08	"							
	70	11	1.85	54.50	"							
	80	11	2.14	54.79	"							
	90	11	2.46	55.11								
	100	11	2.68	55.33								
	110	11	2.90	55.55								
	120	11	5.10	55.75		1						

	PAMIR GEOTECHNICAL SERVICES COMPANY											
			STEP DRAV	WDOWN PUMPING	TEST							
Project:	DRINKING WA	TER SUPPLY	Y S YS TEM I	MPROVEMENT PROJ	IECT IN BARC	HI AREA OF KABUL	CITY, AFG					
Site:	Kho	dadadi Well		Coordinate:	Lat: 34	.49881382, Long: 69	.07115115					
Well Depth ((m):	200	Pump Posi	tion (m):	185	Pump Type:	Submersible					
Static Water	: Level (m):	57.35	Casing/Sc	reen Type:	Steel - 10 in	Screen Position (m)	uknown					
Dynamic Wa	ater Level (m):	176.40	Height of M	Aeasuring Point (m):	0.5	Measuring with Water	Level Indicator					
Drawdown (n	n):	119.05	Discharge	Rate (lps):	10	Start Date:	01.01.2021					
Time	Elapsed Time (min)	Depth t (m	to Water bmp)	Drawdown (m)	Q (lps)	Comments						
				STEP 2								
12:10AM	120	11	3.10	55.75	12							
	121	11	7.44	60.09	"							
	122	11	9.96	62.61	"							
	123	12	4.25	66.90	"							
	124	12	7.00	69.65	"							
	125	12	8.33	70.98	"							
	126	131.94		74.59	"							
	127	13	3.62	76.27	"							
	128	135.58 136.72 136.87 136.98		78.23	"							
	129			79.37	"							
	130			79.52	"							
	131			79.63	"							
	132	13	7.29	79.94	"							
	133	13	7.38	80.03	"							
	134	13	7.68	.68 80.33								
	135	138.30 138.42		80.95	"							
	136			81.07	"							
	137	13	7.51	80.16	"							
	138	13	5.42	78.07	"							
	139	13	4.67	77.32	"							
	140	13	3.93	76.58	"							
	142	13	3.33	75.98	"							
	144	13	4.36	77.01	"							
	146	13	6.21	78.86	"							
	148	14	1.77	84.42	"							
	150	14	4.45	87.10	"							
	155	14	8.26	90.91	"							
	160	15	2.42	95.07	"							
	165	15	5.93	98.58	"							
	170	15	6.97	99.62	"							
	175	15	8.52	101.17	"							
	180	15	9.94	102.59	"							
	190	16	3.14	105.79	"							
	200	16	4.44	107.09	"							
	210	16	6.62	109.27	"							
	220	17	3.11	115.76	"							
	230	17	4.50	117.15	"							
	240	17	6.40	119.05	"							

PAMIR GEOTECHNICAL SERVICES COMPANY

CONSTANT PUMPING TEST										
Project:	DRINKING V	VATER SUPPL	Y SYSTEM IM	PROVEMENT PROJI	ECT IN BARCH	I AREA OF KABUL CITY	, AFG			
Site:	Kh	odadadi Well		Coordinate:	Lat: 34.49881382, Long: 69.07115115					
Well Depth (m):		200 Pump Position		n (m):	185	Pump Type:	Submersible			
Static Water L	evel (m):	57.35	Casing/Scree	en Type:	Steel - 10 in	Screen Position (m):	uknown			
Dynamic Water	Level (m):	92.40	Height of Mea	asuring Point (m):	0.5	Measuring with Water Leve	l Indicator			
Drawdown (m):		35.05	Discharge Ra	nte (lps):	6	Start Date:	12.31.2020			
Time	Elapsed Time (min)	Depth to (m b	Water np)	Drawdown (m)	Q (lps)	Comments				
9:40 AM	0	57.3	35	0.00	6					
	1	67.4	45	10.10	"					
	2	72.0	53	15.28	"					
	3	74.2	26	16.91	"					
	4	76.4	45	19.10	"					
	5	77.3	30	19.95	"					
	6	78.0)4	20.69	"					
	7	78.7	76	21.41	"					
	8	79.3	34	21.99	"					
	9	79.8	35	22.50	"					
	10	80.3	51	23.16						
	11	80.9	93	23.58						
	12	81.2	20	23.85						
	13	81.3	03 05	24.18						
	14	01.0	55	24.50						
	15	82.1	10	24.75						
	10	82	57	25.00	"					
	17	82.07		25.52	"					
	10	83.02		25.52	"					
	20	83.02		25.89	"					
	20	83.4	41	26.06	"					
	24	83.0	50	26.25	"					
	26	83.0	57	26.32	"					
	28	83.7	72	26.37	"					
	30	83.7	78	26.43	"					
	35	83.9	97	26.62	"					
	40	84.2	23	26.88	"					
	45	84.4	40	27.05	"					
	50	84.4	41	27.06	"					
	55	84.4	41	27.06	"					
	60	84.3	37	27.02	"					
	70	84.2	20	26.85						
	80	84.2	25	26.90						
	90	84.4	+1	27.06						
	100	84.3	70	27.20						
	110	84.0	20	27.55	"					
	120	85.3	28	27.55	"					
	180	85.0	52	21.05	"					
	210	85.9	94	28.59	"					
	240	86.2	22	28.87	"					
	270	86.5	51	29.16	"					
	300	86.7	72	29.37	"					
	330	86.9	91	29.56	"					
	360	87.0)8	29.73	"					
	390	87.2	29	29.94	"					
	420	87.4	43	30.08	"					
	450	87.5	54	30.19	"					
	480	87.6	59	30.34	"					
	510	87.8	33	30.48	"					
	540	87.9	98	30.63	"					
	570	88.0)6	30.71	"					
	600	88.1	15	30.80	"					
	630	88.2	25	30.90	"					

PAMIR GEOTECHNICAL SERVICES COMPANY

			CONSTA	ANT PUMPING TEST							
Project:	DRINKING V	DRINKING WATER SUPPLY SYSTEM IMPROVEMENT PROJECT IN BARCHI AREA OF KABUL CITY, AFG									
Site:	Kho	odadadi Well		Coordinate:	Lat: 34	49881382, Long: 69.071	15115				
Well Depth (m):	200	Pump Positi	on (m):	185	Pump Type:	Submersible				
Static Water	Level (m):	57.35	Casing/Scre	en Type:	Steel - 10 in	Screen Position (m):	uknown				
Dynamic Wa	ter Level (m):	92.40	Height of Me	easuring Point (m):	0.5	Measuring with Water Leve	el Indicator				
Drawdown (m):		35.05	Discharge Rate (lps):		6	Start Date: 12.31.2020					
Time	Elapsed Time (min)	Depth to (m b	Water mp)	Drawdown (m)	Q (lps)	Comments					
	660	88.	34	30.99	"						
	690	88.	56	31.21	"						
	720	88.	63	31.28	"						
	750	88.	69	31.34	"						
	780	88.	74	31.39	"						
	810	88.	83	31.48	"						
	840	88.95		31.60	"						
	870	88.	94	31.59	"						
	900	90.	53	33.18	"						
	930	91.	52	34.17	"						
	960	91.58		34.23	"						
	990	91.70		34.35	"						
	1020	91.80		34.45	"						
	1050	91.	85	34.50	"						
	1080	91.	92	34.57	"						
	1110	92.	00	34.65	"						
	1140	92.	03	34.68	"						
	1170	92.	07	34.72	"						
	1200	92.	05	34.70	"						
	1230	92.	08	34.73	"						
	1260	92.	12	34.77	"						
	1290	92.	17	34.82	"						
	1320	92.	20	34.85	"						
	1350	92.	22	34.87	"						
	1380	92.	27	34.92	"						
	1410	92.	36	35.01	"						
	1440	92.40		35.05	"						

RECOVERY TEST										
Project:	DRINKING W	VATER SUPP	LY SYSTEM I	MPROVEMENT PRO	OJECT IN BARCHI	AREA OF KABUL C	ITY, AFG			
Site:	Kho	dadadi Well		Coordinate:	Lat: 34.49881382, Long: 69.07115115					
Well Depth (1	n):	200	Pump Positio	n (m):	185	Pump Type:	Submersible			
Static Water	Level (m):	57.35	Casing/Scree	en Type:	Steel - 10 in	Screen Position (m)	uknown			
Dynamic Wa	ter Level (m):	92.40	Height of Me	asuring Point (m):	0.5	Measuring with Water	Level Indicator			
Drawdown (m):		35.05	Discharge Ra	ate (lps):	6	Start Date:	01.01.2021			
Time	Time Since Pumping Started, t (min)	Elapsed Time (min)	t/t'	Depth to Water (m bmp)	Residual Drawdown (m)	Comme	nts			
	1440	0	0.00	92.40	35.05					
	1441	1	1441.00	89.44	32.09					
	1442	2	721.00	85.48	28.13					
	1443	3	481.00	82.8	25.45					
	1444	4	361.00	81.7	24.35					
	1445	5	289.00	80	22.65					
	1446	6	241.00	78.13	20.78					
	1447	7	206.71	77.16	19.81					
	1448	8	181.00	76.2	18.85					
	1449	9	161.00	75.5	18.15					
	1450	10	145.00	74.9	17.55					
	1451	11	131.91	74.03	16.68					
	1452	12	121.00	73.53	16.18					
	1453	13	111.77	73.12	15.77					
	1454	14	103.86	72.7	15.35					
	1455	15	97.00	72.04	14.69					
	1456	16	91.00	71.54	14.19					
	1457	17	85.71	71.12	13.77					
	1458	18	81.00	70.64	13.29					
	1459	19	76.79	69.87	12.52					
	1460	20	73.00	69.3	11.95					
	1462	22	66.45	68.66	11.31					
	1464	24	61.00	68.2	10.85					
	1466	26	56.38	67.8	10.45					
	1468	28	52.43	67.46	10.11					
	1470	30	49.00	66.77	9.42					
	1475	35	42.14	66.3	8.95					
	1480	40	37.00	65.83	8.48					
	1485	45	33.00	65.43	8.08					
	1490	50	29.80	65.08	7.73					
	1495	55	27.18	64.4	7.05					
	1500	60	25.00	63	5.65					
	1510	70	21.57	62.51	5.16					
	1520	80	19.00	62.12	4.77					
	1530	90	17.00	61.45	4.10					
	1540	100	15.40	60.01	2.66					
	1550	110	14.09	59.7	2.35					
	1560	120	13.00	59.31	1.96					

Photograph

