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Abstract In this study, it has been investigated whether

the SSTs of Mediterranean Sea and Persian Gulf and

combination of them are applicable and effective variables

as predictors for operational streamflow forecasting,

regionally, in Karkheh basin or not. For this goal, the

singular value decomposition (SVD) method has been used

to determine the effective nodes of Mediterranean Sea and

Persian Gulf on the climate of the subbasins of this basin

and to produce the most correlated time series of SST with

the streamflow of each subbasin. In this research, the best

predictors have been detected from several combinations of

the appropriate predictors based on the cross-validation

analysis for the results of the Generalized Regression

Neural-Network model. Results show that autumn SST of

Mediterranean Sea and Persian Gulf is prominently

effective variables for forecasting the streamflow in all

subbasins of Karkheh basin in April and May, respectively.

Summer SST of Persian Gulf has been detected as an

effective predictor for streamflow forecasting in April and

May in snowy regions. Moreover, the results demonstrate

that the combination of Mediterranean Sea SST and Per-

sian Gulf SST affects the streamflow in almost all the

regions of the basin in April, while the streamflow in May

is affected only by Persian Gulf SST. In addition, the north

and west regions of Karkheh basin (Garsha and Seimareh

subbasins) as well as the east and south regions of this

basin (Tang Mashooreh and Karkheh subbasins) have

similar pattern of the best predictors for operational

streamflow forecasting in all the spring months.

Keywords Operational streamflow forecasting � Sea
surface temperature � Mediterranean Sea � Persian Gulf �
Singular value decomposition � Generalized regression

neural network

Introduction

Karkheh basin is one of the large basins in the west of Iran

which is a part of Persian Gulf basin. This basin with an

area of 50,764 km2 lies between latitudes 33�400 and

35�000N, and longitudes 46�230 and 49�120E, where

Hamedan, Kermanshah, Ilam, Lorestan, and Khoozestan

provinces are located. Figure 1 shows the location of

Karkheh basin in the provinces. Because of its large area,

Karkheh basin has a variety of weather conditions, such

that its southern areas are semiarid with mild winters and

long and warm summers, while the northern regions of this

basin, which are mountainous areas, have cold winters and

mild summers. The temperature in this basin varies from

-25 to 50 �C. The average of annual precipitation is ran-

ged from 300 to 800 mm. Overall, Karkheh basin has

Mediterranean climate. The major sources of precipitation

in the study basin are moist air flows which get to the area

along with low-pressure centers that originate from

Mediterranean Sea, Persian Gulf, and Black Sea. The

annual frequency of the low-pressure centers of Mediter-

ranean Sea, Persian Gulf, and Black Sea is 64.5, 22.9, and

6.12 %, respectively.

The main river of the basin is Karkheh River formed at

the beginning of two branches: Gamasiab in the northeast
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and Gharesu in the northwest. The two rivers join together

at the end of Kermanshah plain and make up Seimareh

River. The confluence of Seimareh and Kashkan River,

which originates from the east part of the basin, forms

Karkheh River. The rivers of Karkheh basin supply

domestic, agricultural, and industrial water demands of the

five provinces. Therefore, long-lead streamflow forecasting

of the each river plays an important role in water resources

management for this basin and its provinces.

In a variety of the researches, ocean-atmospheric vari-

ables, such as El Niño-Southern Oscillation (ENSO),

Pacific Decadal Oscillation (PDO), the Southern Oscilla-

tion Index (SOI), the North Atlantic Oscillation (NAO),

and Atlantic Multi decadal Oscillation (AMO), have been

applied as predictors for long-lead hydrological forecasting

in all over the world (Hamlet and Lettenmaier 1999;

Araghinejad et al. 2006; Karla and Ahmad 2009; Soukup

et al. 2009; Dezfuli et al. 2010; Azimi et al. 2011; Lorenzo-

lacruz et al. 2011; Tabari et al. 2013).

Sea surface temperature of oceans and seas is another

variable, whose effectiveness on the meteorological and

hydrological conditions of various areas all over the world

has been proved in several studies (Nicholls 1989; Uvo

et al. 1998; Wang and Ting 2000; Rodriguez-Fonseca and

de Castro 2002; Tootle and Piechota 2006; Oubeidillah

et al. 2012; Sagarika et al. 2015); therefore, it has been

applied as predictor for long-lead forecasting of rainfall

and streamflow (Wallace et al. 1992; Nazemosadat 1998;

Clark et al. 2000; Rowell 2003; Kassomenos and McGre-

gor 2006; Tootle et al. 2007, 2008; Nazemosadat 2008;

Lima and Lall 2010; Gamiz-Fortis et al. 2010; Oubeidillah

et al. 2011; Meidani and Araghinejad 2014).

Mediterranean Sea is an important source of humidity in

the west of Iran which affects the climate of its surrounding

countries. For instance, the variability of sea-level pressure

(SLP) of Mediterranean Sea in a region from Balkkans

toward Arabian Peninsula in winter affects on rainfall in

Turkey (Kutiel et al. 2001). In addition, the anomalies of

Mediterranean Sea SST have positive correlation with total

rainfall of the wet seasons over the Sahel in Africa (Rowell

2003). Moreover, the surface temperature, humidity, and

atmospheric pressure data of Mediterranean Sea have an

effect on estimating the variation of perceptible water

content over southern Greece (Kassomenos and McGregor

2006). Besides, the autumn SST of Mediterranean Sea has

an effect on winter precipitation and streamflow in south-

west of Iran and it is considered as a predictor for winter

streamflow forecasting (Meidani and Araghinejad 2014).

As Mediterranean Sea has large size and limited

exchange at Gibraltar Strait, its dynamics is mainly linked

to the local climate, and is particularly sensitive to

anthropogenic climatic perturbations (Skiliris et al. 2011).

In the winter of the northern hemisphere when the Red Sea

and Persian Gulf act as powerful sources of water vapor,

and cause little precipitation locally due to descending air

in the Hadley cell, the Mediterranean Sea of low pressure

lying between the two regions of high pressure in the North

Atlantic, centered at about 30� N and those over Asia at

about 45� N leads to the westerly prevailing winds along

the north coast of Africa toward Iran (Kendrew 1922).

Another sea which affects on the climate of Iran is

Persian Gulf. Nazemosadat (1998) proved that there is a

significant negative correlation between SST of Persian

Gulf and precipitation in winter in the provinces located in

the west and south of Iran; such that when SST of Persian

Gulf is less than the average, rainfall will be more than

normal in this region. Based on this study, Nazemosadat

(2008) used SST of Persian Gulf in autumn and winter to

forecast precipitation in these seasons in Shiraz and

Bushehr stations in southwestern Iran.

The best known phenomenon in the Persian Gulf which

can cause abrupt changes in the circulation and heat budget

for a short period of time is shamal, a northwesterly wind

occurring during winter and summer (Perrone 1979). On

the basis of duration, winter shamal includes two types of

winds: those which last 24–36 h and those which last

3–5 days. The winds bring cold dry air (T = 20 �C) and
result in cooling of SST about 10 �C noticeably in the

Fig. 1 Location of Karkheh basin and its subbasins, rivers, reser-

voirs, and rain stations
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northern and shallower shelf regions (Thoppil and Hogan

2010). The other air masses which mostly affecting the

area in winter is Sudan current. About 30 % of the total

rain-bearing air masses coming to Iran originate in North

Africa, Red Sea, and Saudi Arabia which is called Sudan

current (Khalili 1992).

As the major sources of precipitation in the study basin

are moist air flows which reach the area along with low-

pressure centers that originate from Mediterranean Sea,

Persian Gulf, and Black Sea with the annual frequency of

64.5, 22.9, and 6.12 %, respectively, the fluctuations of Sea

Surface Temperature (SST) of Mediterranean Sea and

Persian Gulf can affect on meteorological and hydrological

conditions of this basin; therefore, they can be considered

as effective predictors for meteorological and hydrological

forecasting of the study basin.

Due to the fact that sea surface temperature (SST)

variable is measured in a large number of grid cells,

applying methods, such as Principal Component Analysis

(PCA), or Singular Value Decomposition (SVD) is neces-

sary to produce time series of SST having the highest

correlation with predicted hydrological variables. In most

of the studies in this field, the SVD method has been pre-

ferred and used (Wallace et al. 1992; Uvo et al. 1998;

Rowell 2003; Soukup et al. 2009; Meidani and Araghinejad

2014), because the SVD method is able to evaluate two

spatio-temporal variables, such as SST and precipitation or

streamflow, in several stations using the cross-covariance

matrix, while the PCA method only can evaluate one

spatio-temporal variable.

In order to forecast hydrological variables in long-lead

time intervals, ANN method has usually been used (Anctil

and Rat 2005; Wang et al. 2009; Wu et al. 2010; Sattari

et al. 2012; Meng et al. 2015). However, a number of

researches have evaluated the performance of neural-net-

work types, including Artificial Neural Network (ANN)

with the structure of feed forward back propagation

(FFBP), Generalized Regression Neural Network (GRNN),

and Radial Basis Function (RBF) for monthly hydrological

forecasting (Cigizoglu and Alp 2004; Cigizoglu 2005; Kisi

2008; Hosseini-Moghari and Araghinejad 2015). Their

results unanimously indicates that the performance of

GRNN model is better than other methods for hydrological

forecasting in monthly time scale, because GRNN has not

been faced the local minima problem, while FFBP has

often encountered it. Besides, only GRNN technique has

produced the results that all are physically possible, and

they are not negative. Cigizoglu (2005) also compared the

performance of GRNN with AR method, and the results

indicated the superiority of GRNN for monthly forecasting.

In the light of what was said, as the major sources of

precipitation in the Karkheh basin are the moist air flows

that originate from Mediterranean Sea, Persian Gulf, and

Black Sea with the annual frequency of 64.5, 22.9, and

6.12 %, respectively, and in the previous researches, the

effectiveness of Mediterranean Sea and Persian Gulf SST

on the autumn and winter precipitation forecasting in a

spread region in the west of Iran has been proved sepa-

rately (Nazemosadat 1998; Nazemosadat 2008; Meidani

and Araghinejad 2014), and due to the effect of winter

precipitation on spring streamflow, the focus of this

research is on investigation of the combined effect of

Mediterranean Sea and Persian Gulf SST on operational

streamflow forecasting in the west of Iran in spring. Indeed,

we want to survey whether SSTs of both Mediterranean

Sea and Persian Gulf are applicable and effective variables

as predictors for operational streamflow forecasting,

regionally, or not. Besides, we want to study the direct

effect of Mediterranean Sea and Persian Gulf SST on

streamflow forecasting without forecasting of precipitation

to reduce the error of rainfall-runoff modeling from the

final results. For this purpose, naturalized streamflow data

affected directly by precipitation have been used. In addi-

tion, the SVD technique has been used in this study to

recognize the effective nodes of Mediterranean Sea and

Persian Gulf on the climate of the Karkheh basin and to

produce the most correlated time series of SST with the

streamflow of the basin. Because monthly time scale has

been selected for streamflow forecasting, GRNN method

has been preferred, based on the literature review, to apply

for this study.

Data

Sea surface temperature (SST) of Mediterranean Sea

and Persian Gulf

Sea surface temperatures of Mediterranean Sea and Per-

sian Gulf are measured for 1� grid squares of the seas.

Therefore, the overall surface of them is covered by 101

and 26 grid cells (node), respectively. Monthly average of

SST for each grid cell (NOAA_OI_SST_V2) is available

from November 1981 to present in the website (http://

www.esrl.noaa.gov/psd). In this study, the seasonal average

of SST in all grid cells from 1982 to 2007 has been used.

Hydrological and meteorological data

In this paper, the forecasting of spring monthly inflow to

four reservoirs in Karkheh basin, including Garsha, Tang

Mashooreh, Seimareh, and Karkheh, has been investigated.

The position, ID (identification code), and the subbasin at

the upstream of each reservoir have been illustrated in

Fig. 1. It is noted that the ID of each reservoir is the same

as its subbasin. As can be seen from Fig. 1, the reservoirs
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collect the flows of all rivers overall the Karkheh basin.

Table 1 shows the ID, name, location, and rivers of the

dams. It is worth nothing that to describe the properties of

each dam and related subbasin shown in Fig. 1 in Table 1,

ID has been used jointly in Fig. 1 and Table 1.

Garsha and Tangmashooreh reservoirs collect the

streamflow of the branches which have natural streams.

However, Seimareh and Karkheh dams are located down-

stream of two other dams and the inflow to them is regu-

lated. As climate indices affect the natural phenomena, the

naturalized inflow data to these two reservoirs have been

used in this research. To achieve the natural streamflow,

which is affected directly by precipitation, and indeed, is

the streamflow before every harvesting and use, the value

of water harvesting from each section of the river has been

added to the observed streamflow in the same section. It is

noted that Garsha and Tang Mashooreh dams are in the

study phase, while Seimareh and Karkheh dams are being

exploited.

In addition to Mediterranean Sea and Persian Gulf SST,

the monthly precipitation data of rain stations located in the

upstream of dams have been utilized as predictors for

forecasting the inflow to each reservoir. The distribution of

rain stations in the subbasin of each dam and the number of

them have been displayed in Fig. 1 and Table 1, respec-

tively. The monthly hydrometrical and meteorological data

have been available from 1957 to 2007; but because the

SST data are available since November 1981, the hydro-

metrical and meteorological data in the period from 1982

to 2007 have been used in this paper.

Methodology

The current research has been done in three steps as

follows:

Step 1 Applying SVD method to recognize the effective

nodes of Mediterranean Sea and Persian Gulf on

the climate of the Karkheh basin, and to produce

the time series of SST and also precipitation of

rain stations, such that they have the most

correlation with the inflow to each of the

reservoirs using the SVD technique

Step 2 Selecting the appropriate predictors for each

month and each reservoir according to two

evaluation criteria, including: correlation

coefficient (R2) and an index based on mutual

information (MI) and entropy rules, MMI

Step 3 Forecasting of spring monthly inflow to each

reservoir using GRNN method based on various

combinations of predictors, and selecting the best

final predictors for each reservoir and each month

based on three assessment criteria, including:

Nash–Sutcliff, root mean square error (RMSE),

and correlation coefficient

In the following, the methods used for each step have

been described.

Singular value decomposition (SVD)

SVD is a powerful statistical technique on the basis of a

theorem from linear algebra. It is a data-mining procedure

which can produce the most correlated series from a huge

number of data. According to the SVD method, a rectan-

gular matrix Amn can be broken into the three matrices,

including: an orthogonal matrix Umm, a diagonal matrix

Smn, and the transpose of an orthogonal matrix Vnn.

Mathematically, it is represented as follows (Bretherton

et al. 1992):

Amn ¼ UmmSmnV
T
nn ð1Þ

where UTU = Imm, VTV = Inn, and the columns of

U are the left singular vectors, S has singular values,

and VT has rows which are the right singular vectors.

The columns of U and V are made up of orthonormal

eigenvectors of AAT and ATA, respectively. Moreover,

the singular values in S are square roots of eigenvalues

from of AAT or ATA which are arranged in descending

order.

The procedure of applying SVD to produce correlated

series from predictor variables (such as SST of Persian

Gulf in 26 points) and forecasted variables (inflow to the

four reservoirs of Karkheh basin) for 25 years is presented

here. First, the cross-covariance matrix of the standardized

values of Persian Gulf SSTs and streamflow data should be

produced as follows:

Table 1 Properties of Karkheh

reservoirs
ID Name Location Name of rivers Number of rain stations

Latitude Longitude

1 Garsha 47�2805800 33�5603200 Gamasiab and Ghare su 15

2 Tang Mashooreh 47�5001800 33�4803200 Kashkan 3

3 Seimareh 47�1204700 33�1604100 Seimareh 6

4 Karkheh 48�0703100 32�2902200 Karkheh 5
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COVAR ¼ 1

y
�
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qy;1 � � � qy;s
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3
775

ð2Þ

where g is the number of SST’s grid cells, y is the number

of years, and s represent the number of streamflow stations.

Then, applying the SVD method for the above matrix

yields two orthogonal matrices (Ugg and Vss) containing

singular vectors and a diagonal matrix (Sgs) containing the

singular values, among which the following relation is

established:

SVD ðCOVARgsÞ ¼ UggSgsV
T
ss: ð3Þ

As previously mentioned, Matrix S is a diagonal matrix

containing singular values arranged in descending order.

To compare the relative importance of modes based on the

singular values, the squared covariance fraction (SCF) as a

useful measurement has been used (Bretherton et al. 1992).

It is defined as follows:

SCFj ¼
C2
jP
C2

ð4Þ

where Cj represents each of the singular values. When the

SCF value of the first mode is too higher than the others,

the temporal expansion series can be obtained by project-

ing the data onto the first column of singular vector

matrices. For example, the projected temporal expansion

series of SST (SSTP) and streamflow (QP) for the first

mode is computed with i = 1 in Eq. 5:

SSTPðiÞ ¼

sst1;1 � � � sst1;g

..

. . .
. ..

.

ssty;1 � � � ssty;g

2
664

3
775U :; ið Þ

QPðiÞ ¼

q1;1 � � � q1;s

..

. . .
. ..

.

qy;1 � � � qy;s

2
664

3
775V :; ið Þ:

ð5Þ

In the above equation, i can vary from 1 up to the

maximum number of significant modes.

In the present study, the SVD method has been applied

for the streamflow in each of the spring months and the

seasonal average SST of Persian Gulf and Mediterranean

Sea in the last winter, autumn, and summer, in all grid

points (101 grids in Mediterranean Sea and 26 grids in

Persian Gulf). Using SVD, a projected series of SST,

having the highest correlation with the streamflow, has

been produced for each season.

Moreover, the SVD technique has been applied for

monthly rainfall of the stations at the upstream of each

reservoir and the monthly inflow to the reservoir. Conse-

quently, using SVD, a projected series of rainfall has been

achieved for each month which has a higher correlation

with the inflow than the average of the rainfall of the sta-

tions. This process has been repeated for a time delay of

1–5 months.

Evaluation criteria for the selection

of the appropriate predictors

To select the appropriate predictors, the correlation coef-

ficient (CORR) has been used to discover the linear cor-

relations between predictors and forecasted variables.

Mutual Information Index (MI) also represents a general

information theoretic approach to determine the statistical

dependence between variables. MI has been developed in

hydro-climatic issues by a presented approach that identi-

fies optimal predictors for rainfall probabilistic forecasting

(Sharma 2000). This index determines the mutual infor-

mation between two data series x and y, and because of

having density-based formulation, it is able to recognize

nonlinear dependence patterns.

In this research, an index based on Mutual Information

index (MI) and entropy roles, MMI, has been presented and

applied to determine the nonlinear correlations. If x and y

are the representative of predictor and forecasted variables,

respectively, MMI is defined as follows:

MMI ¼ MI x; yð Þ
min H xð Þ; H yð Þð Þ ð6Þ

where MI (x,y) is the Mutual Information index, and H(x)

and H(y) are the ‘simple’ entropy of the time series x and y

calculated as follows (Gray 2013):

MI x; yð Þ ¼
X
y2Y

X
x2X

p x; yð Þ log p x; yð Þ
p xð Þ p yð Þ

� �
ð7Þ

HðxÞ ¼ �
X
x2X

p xð Þ log p xð Þ� 0

HðyÞ ¼ �
X
y2Y

p yð Þ log p yð Þ� 0
ð8Þ

where p(x,y) is the joint probability density function of

x and y, and p(x) and p(y) are the marginal probability

density functions of x and y, respectively. If x and y are

independent, i.e., x does not give any information abou-

t y and vice versa, their MI will be zero. The strong

dependence between two variables results in a high value

of MI.

Based on entropy rules, the range of MI is as follows

(Gray 2013):
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0� MI x; yð Þ � min H xð Þ; H yð Þð Þ: ð9Þ

Therefore, the range of the MMI index is between 0 and

1, such that if data series x and y are independent com-

pletely, their MMI will be zero, and if they are dependent

completely, their MI is equal to minimum of H(x) and H(y),

and therefore, their MMI will be equal to one. While MI

index has not a constant upper limit, the constant range of

MMI allows the user to select simply the appropriate pre-

dictors based on a specified limit.

In the current study, to select the appropriate predictors

for forecasting of inflow to each reservoir in each of the

spring months, the monthly streamflow and precipitation

(projected series of rainfall resulted from SVD method)

with a time delay of 1–5 months, and a seasonal projected

series of Mediterranean Sea and Persian Gulf SST have

been evaluated according to these two evaluation criteria.

Forecasting procedure

Generalized regression neural network (GRNN)

The generalized regression neural network (GRNN) is a

variant of the radial basis function (RBF) network. It is a

universal approximator for smooth functions, and is able to

solve any smooth function-approximation problem with

enough data. The GRNN considers each of the experienced

pairs of data as a possible class that is probably to happen

with respect to the observation of specific conditions

(Araghinejad 2014).

GRNN is a three layer network in which the number of

neurons in the input and output layers, such as the most

neural networks, is equal to the dimension of input and

output vectors, respectively. However, unlike other net-

works, the number of neurons in the hidden layer of this

network is equal to the number of observed data.

In this model, a Gaussian performance function is

applied in each of the neurons in the hidden layer and the

input data to this function for each neuron is the Euclidian

distance between new input vector to the neuron and the

vector of the same size of the input specified to that

neuron. The Gaussian function is as follows (Araghinejad

2014):

f ðXr; bÞ ¼ e�I2

I ¼ Xr � Xbk k � 0:8326=h
ð10Þ

where Xr is the network input vector with unknown output,

Xb is the observed input vector in time or location b, and h

is the spread parameter of the Gaussian function (a type of

radial basis function). The output of the function is

between 0 and 1, such that when Xr � Xbk k approaches to

zero, the output approaches to 1. In addition, when it

approaches to a large value, the output approaches to 0.

The output of the GRNN is calculated by the following

equation (Araghinejad 2014):

Yr ¼
1

Pn
b¼1

f ðXr; bÞ

Xn
b¼1

f ðXr; bÞ � Tb½ � ð11Þ

where Tb is the target associated with the bth observation,

and n is the number of observations.

Assessment criteria for the evaluation of forecasting

To evaluate the forecasting results, in addition to two well-

known criteria, including root mean square error (RMSE)

and correlation coefficient (CORR), the Nash–Sutcliff

efficiency coefficient has been applied between observed

and forecasted data. The Nash–Sutcliff index has been

presented in 1970 by Nash and Sutcliff to evaluate the

predictive power of hydrological models (Nash and Sut-

cliffe 1970). It is defined as follows:

E ¼ 1�
PT

t¼1 Qt
o � Qt

m

� �2
PT

t¼1 Qt
o � �Qo

� �2 ð12Þ

where �Qo is the mean of observed streamflow, and Qt
m and

Qt
o are the estimated and observed streamflows at time t,

respectively. The range of this index is from -? to 1. The

efficiency of 1 (E = 1) means that the modeled streamflow

corresponds to the observed data, while E = 0 indicates

that the model estimations are equal to the mean of

observed data and E\ 0 demonstrates that the residual

variance, calculated in the numerator of Eq. (12), is larger

than the data variance, calculated in the denominator of

that. As a result, the closer values of model efficiency to 1

indicate the more accurate results of the model.

Result and discussion

As the study has been done in three steps, the results of

each step have been presented separately as follows.

Results of SVD analysis

The first mode SCF resulted from the SVD analysis for all

the nodes of Mediterranean Sea and Persian Gulf was

above 95 % in all the cases. As a result, it can be concluded

that the SST of all the nodes of these two seas affect on the

study region. As the vast majority of the variability in the

data is explained in the first mode, the projected series

obtained from the first mode of SVD has been applied as

probable predictors in this study.

Moreover, the first mode SCF resulted from the SVD

analysis for the precipitation of rain stations and inflow to
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the reservoirs was above 90 % in all the cases. Thus, the

rainfall projected series obtained from the first mode of

SVD has been used as probable predictors rather than the

average precipitation of the rain stations in this study.

Results of selecting the appropriate predictors

Among all the considered variables as probable predictors,

the variables which had the correlation coefficient (CORR)

or the modified mutual information (MMI) greater than 0.5

with the forecasted variable have been chosen as the

appropriate predictors for modeling in the present paper.

The appropriate streamflow predictors for each reservoir

and each month have been presented in Table 2.

As can be seen from Table 2, several variables have

been detected as selected predictors for each reservoir and

each month. However, it can be prominently recognized

that summer, autumn, and winter projected a series of

Persian Gulf SST have high correlation and/or mutual

information with the inflow to all reservoirs in May and

June. In addition, an autumn projected series of Mediter-

ranean Sea SST has high correlation and mutual infor-

mation with the inflow to all reservoirs in April. Moreover,

a rainfall projected series in March and monthly stream-

flow in April and May have high correlation and/or mutual

information with the inflow to all reservoirs in April, May,

and June, respectively.

Results of forecasting

To calibrate the GRNN model in training phase, on the one

hand, the optimum value of Spread parameter should be

determined, such that the error of forecasting will be the

lowest one. On the other hand, although a number of

variables have been chosen as candidate streamflow pre-

dictors for each month and each reservoir based on CORR

and MMI criteria, applying all of them together does not

necessarily lead to the best results of forecasting. There-

fore, various combinations of the candidate predictors have

been tested using GRNN model, and for each of the

combinations, the cross-validation analysis has been done

to determine the best value of Spread parameter (from the

range between 0.1 and 7 with the steps 0.1) which results in

the lowest error for the considered combination of the

predictors. The best obtained results of the model for each

combination of the predictors (resulted from the best value

of Spread parameter) have been evaluated according to

three criteria, Nash–Sutcliff, RMSE, and CORR. Finally,

according to the best results, the best combination of the

predictors has been determined for each month and each

dam.

Table 3 shows the best predictors and their assessment

criteria resulted from the cross-validation analysis of 25

streamflow forecasts not used in the calibration phase for

each reservoir for April. Tables 4 and 5 illustrate similar

results for May and June, respectively.

It can be seen from Table 3 that the autumn projected

series of Mediterranean Sea SST is an effective predictor

for forecasting the inflow to all reservoirs in April. Summer

projected series of Persian Gulf SST also affects the inflow

to Garsha reservoir in April. To forecast the inflow to Tang

Mashooreh and Karkheh reservoir in April, winter pro-

jected series of Persian Gulf SST is an effective predictor.

Rainfall projected series in March is useful predictors for

Table 2 Selected predictors for forecasting the spring monthly inflow to each of the reservoirs

Predictors Forecasted variable: monthly streamflow

Garsha Tang Mashooreh Seimareh Karkheh

Type Description April May June April May June April May June April May June

Persian Gulf SST Summer projected series 4
*

4
*

4
*

4 4
*

4
*

4
*

4
*

4
*

4
*

Autumn projected series 4 4 4
*

4
*

4
*

4
*

4
*

4
*

Winter projected series 4 4
*

4
*

4
*

4
*

4 4
*

4
*

4
*

Mediterranean Sea

SST

Autumn projected series 4
*

4
*

4
*

4
*

4
*

4
*

4

Monthly rainfall Rainfall projected series in

March

4
*

4 4 4
*

4
*

4
*

4
*

4

Rainfall projected series in

April

4
*

Rainfall projected series in May 4
*

4
*

4
*

Monthly streamflow Streamflow in March 4 4 4

Streamflow in April 4 4 4 4 4 4 4
*

Streamflow in May 4
*

4
*

4
*

4
*

4
*: Both MMI and CORR are greater than 0.5; 4: Either MMI or CORR is greater than 0.5
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the forecasting of the inflow to Garsha, Seimareh, and

Karkheh reservoirs in April. The best predictors show that

the streamflow in almost all the regions of Karkheh basin in

April is affected by a combination of Mediterranean Sea

SST and Persian Gulf SST. Comparing the best predictors

of the reservoirs in April, it can be suggested that the

predictors of Garsha and Seimareh reservoir are similar.

Likewise, the predictors of Tang Maghooreh and Karkheh

reservoirs are similar. The assessment criteria show that the

accuracy of the Karkheh inflow forecast is more than other

reservoirs. Figure 2 shows the point forecasts resulted from

cross validation by the GRNN model for the best predic-

tors, presented in Table 3, for April.

An assessment of the point estimation presented in

Fig. 2 shows that the results of the GRNN model enjoy the

appropriate accuracy. A detailed evaluation of this fig-

ure shows that the accuracy of the point estimations of

Garsha (a) and Karkheh (d) is better than Tang Mashooreh

(b) and Seimareh (c). It can be seen from Fig. 2 that the

maximum range of streamflow belongs to the inflow to

Garsha reservoir which is between 248 and 1097 MCM.

Although in the cross-validation analysis, 24 data have

been used for calibrating the model for each run, and the

point estimation shows that the model has been able to

estimate well the data in a large range; only the error of the

peak values is relatively high, because the number of them

is few for training the model, but other values have a good

accuracy.

Table 4 prominently shows that autumn projected series

of Persian Gulf SST and streamflow in April are two of the

best predictors for forecasting the inflow to all reservoirs.

Like April, the summer projected series of Persian Gulf

SST and rainfall projected series in previous month, i.e.,

April, are also effective predictors of inflow to Garsha

Table 3 Cross-validation

results of GRNN for April
Forecasted variable: inflow to the reservoirs in April Garsha Tang Mashooreh Seimareh Karkheh

Best predictors

Autumn projected series of Mediterranean Sea SST 4 4 4 4

Summer projected series of Persian Gulf SST 4

Winter projected series of Persian Gulf SST 4 4

Rainfall projected series in March 4 4 4

Assessment criteria

Nash–Sutcliff 0.774 0.701 0.667 0.874

RMSE 0.474 0.534 0.568 0.353

CORR 0.882 0.845 0.822 0.944

Table 4 Cross-validation

results of GRNN for May
Forecasted variable: inflow to the reservoirs in May Garsha Tang Mashooreh Seimareh Karkheh

Best predictors

Autumn projected series of Persian Gulf SST 4 4 4 4

Summer projected series of Persian Gulf SST 4

Rainfall projected series in March 4 4

Rainfall projected series in April 4

Streamflow in April 4 4 4 4

Assessment criteria

Nash–Sutcliff 0.526 0.508 0.722 0.601

RMSE 0.688 0.697 0.526 0.632

CORR 0.832 0.784 0.875 0.864

Table 5 Cross-validation

results of GRNN for June
Forecasted Variable: Inflow to the reservoirs in June Garsha Tang Mashooreh Seimareh Karkheh

Best predictors

Streamflow in May 4 4 4 4

Assessment criteria

Nash–Sutcliff 0.699 0.609 0.581 0.748

RMSE 0.549 0.626 0.647 0.502

CORR 0.849 0.783 0.770 0.872
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reservoir. Besides, rainfall projected series in March affects

the inflow to Tang Mashooreh and Karkheh reservoirs. The

comparison of the best predictors for all reservoirs in May

reveals that the best predictors of Tang Maghooreh reser-

voir are the same as that of Karkheh reservoir. Moreover,

the best predictors of Garsha and Seimareh reservoir are

similar. The assessment criteria in this table show that the

result of the Seimareh inflow forecasts is more accurate

than the others and the accuracy of the results of Garsha

and Tang Mashooreh is similar. Figure 3 illustrates the

point forecasts resulted from cross validation by the GRNN

model for the best predictors, presented in Table 4, for

May.

It can be seen from Fig. 3 that the point estimations of

Garsha, Seimareh, and Karkheh have a good accuracy;

however, the reason why the assessment criteria present the

low accuracy for the two reservoirs, Garsha and Karkheh,

is the one and three estimations for high values for them,

respectively. The lowest accuracy of the high-value esti-

mations is due to their few numbers for training the model,

because the number of extreme values is few. The

maximum range of inflow to the reservoirs in May belongs

to Garsha (192–1072 MCM), and similar to April, the

model has been able to estimate the inflow values (except

the extreme value) appropriately, such that if the extreme

value is omitted, the Nash–Sutcliff index will be 0.775.

Although a number of variables have been detected as

appropriate predictors for forecasting the inflow to the

reservoirs in June, the best results of the cross-validation

analysis shown in Table 5 have been demonstrated that

only the inflow to each reservoir in May is the best pre-

dictor for forecasting the inflow to each of ones in June. It

is due to the fact that Karkheh Basin is located in a

semiarid region, where significant precipitation does not

occur from the late of May to the late of October. There-

fore, as the climate variations affect the precipitation and

consequently the streamflow, the inflow to the reservoirs in

June is not affected by precipitation and the climate

indices.

In Fig. 4, the point forecasts resulted from cross vali-

dation by the GRNN model for the best predictors, pre-

sented in Table 5, for June have been presented.

Fig. 2 Point forecasts of the GRNN model for Garsha (a), Tang Mashooreh (b), Seimareh (c), and Karkheh (d) reservoirs in April based on the

best predictors
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An assessment of the point estimations presented in

Fig. 4 shows that while the results of Garsha and Karkheh

are more accurate than the two others, the point estimation

for all of them enjoys the enough accuracy.

Comparing the results presented in Tables 3, 4, and 5, it

can be concluded that:

• The type of the best predictors in the north and west

regions of Karkheh basin (Garsha and Seimareh

subbasins) is similar in all the spring months.

Likewise, the east and south regions of this basin

(Tang Mashooreh and Karkheh subbasins) have

similar pattern of predictors for streamflow

forecasting.

• The inflow to Garsha reservoir in April and May is

affected by summer SST of Persian Gulf. As the

inflows to Garsha reservoir originate from the rivers in

snowy regions and streamflow in April and May is

resulted from snow melting, it can be suggested that the

SST of Persian Gulf in the previous summer affects the

air temperature and, consequently, the amount of snow

melting in the next spring in this region.

• Winter SST of Persian Gulf affects the streamflow in

the east and south regions (Tang Mashooreh and

Karkheh subbasins) of Karkheh basin in April. In the

previous research (Nazemosadat 1998), it has been

proved that the SST of Persian Gulf in winter has a

significant correlation with the winter precipitation in

the west and south provinces of Iran. The result of the

present study is compatible with the previous study,

because winter precipitation affects the streamflow in

spring, especially April.

• Autumn SST of Mediterranean Sea has been detected

as an effective variable for forecasting the inflow to all

reservoirs in Karkheh basin in April. In the previous

research (Meidani and Araghinejad 2014), it has been

demonstrated that the autumn SST of Mediterranean

Sea affects the winter precipitation in southwest of Iran,

including Karkheh basin. The results of this study are

consistent with the previous research, because on the

Fig. 3 Point forecasts of the GRNN model for Garsha (a), Tang Mashooreh (b), Seimareh (c), and Karkheh (d) reservoirs in May based on the

best predictors
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one hand, naturalized streamflow used in this study is

affected directly by the precipitation, and on the other

hand, winter precipitation affects the streamflow in

spring.

• Autumn SST of Persian Gulf has been identified as one

of the best predictors for forecasting the inflow to all

reservoirs in Karkheh basin in May. In the previous

study (Nazemosadat 2008), autumn SST of Persian

Gulf has been applied for forecasting the precipitation

in this season. The results of the present study suggest

that likeMediterranean Sea, the SST of Persian Gulf in

autumn affects the precipitation in winter and, as a

result, affects the streamflow in spring.

• The inflows to all reservoirs except Seimareh in April

are affected by a combination of Mediterranean Sea

SST and Persian Gulf SST, while in May, the inflows

to all reservoirs are affected by only SST of Persian

Gulf. In contrary, the effect of local predictors, such as

streamflow on the inflows to all reservoirs in June, is

more than climate indices, such as SST of Mediter-

ranean Sea and Persian Gulf.

To assess how the GRNN model has been fitted to the

data in the best streamflow forecasts, shown their results in

Tables 3, 4, and 5, the best values of the Spread parameter

detected from the cross-validation analysis resulted in the

best forecasts have been illustrated in Fig. 5. It is worth

noting that the normal value for the Spread parameter is

equal to one. The Spread values lower than one show that

the function between input and output data has been closely

approximated, while the Spread values larger than the typ-

ical value indicate the smoother function approximation.

It can be seen obviously from Fig. 5 that the GRNN

model has been closely approximated the function between

predictor and predicted data for all the four reservoirs for

June, because the best values of the Spread parameter are

lower than one for all of them. The little values of the

Spread parameter indicate that the diversity of the observed

data is small which can be due to the fact that only one

predictor has been applied for forecasting the inflow to all

reservoirs.

Another assessment of the Fig. 5 indicates that a con-

siderably smooth function approximation has been done by

Fig. 4 Point forecasts of the GRNN model for Garsha (a), Tang Mashooreh (b), Seimareh (c), and Karkheh (d) reservoirs in June based on the

best predictors
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the model for Garsha and Tang Mashooreh, in May, and

for Karkheh in April and May, because of the large values

of the Spread parameter ([3.5), while for Garsha and Tang

Mashooreh in April, and for Seimareh in April and May, a

smooth function approximation close to normal has been

done by the model, due to the values between 1 and 2.5 for

the Spread parameter. The larger Spread values identified

as the best parameter values (from the range between 0.1

and 7 with the steps 0.1) by the model suggest that there are

more complicated functions between predictors and

predicted data, which can be due to the variation of the

predictors.

As autumn SSTs ofMediterranean Sea and Persian Gulf

have been detected as effective predictors for forecasting

the inflow to all reservoirs in April and May, respectively,

to reveal the performance of them for streamflow fore-

casting, the GRNN model has been run for each reservoir

three times for three states, including: only SST, best

predictors without SST, and all the best predictors (with

SST). Table 6 shows the assessment criteria resulted from

the cross validation for three states for April. Table 7

presents similar results for May.

The assessment criteria presented in Table 6 show that

applying only autumn SST of Mediterranean Sea as pre-

dictor leads to the best result for forecasting the inflow to

Karkheh reservoir in April in comparison with other

reservoirs. The comparison of the results obtained from

using single SST (case 1) and best predictors without SST

(case 2) reveals that the results of case 2 for Garsha and

Seimareh reservoirs are better than case 1. Instead, the

results of case 1 for Tang Mashooreh and Karkheh reser-

voir are better than case 2. However, the assessment cri-

teria show that applying autumn SST along with other best

predictors (case 3) produces the best forecasts in compar-

ison with two other cases for all reservoirs. The forecasts in

Fig. 5 Best values of the Spread parameter detected from the cross-

validation analysis for the reservoirs in each month

Table 6 Cross-validation results of streamflow forecasting in the three states of predictors for April

Predictor Assessment criteria Garsha Tang Mashooreh Seimareh Karkheh

Autumn SST of Mediterranean Sea Nash–Sutcliff 0.357 0.436 0.374 0.733

RMSE 0.799 0.733 0.779 0.514

Correlation coefficient 0.626 0.677 0.625 0.878

Best predictors without Mediterranean SST Nash–Sutcliff 0.661 0.419 0.608 0.568

RMSE 0.580 0.744 0.617 0.655

Correlation coefficient 0.818 0.698 0.813 0.767

Best predictors with Mediterranean SST Nash–Sutcliff 0.774 0.701 0.667 0.874

RMSE 0.474 0.534 0.568 0.353

Correlation coefficient 0.882 0.845 0.822 0.944

Table 7 Cross-validation results of streamflow forecasting in the three states of predictors for May

Predictor Assessment criteria Garsha Tang Mashooreh Seimareh Karkheh

Autumn SST of Persian Gulf Nash–Sutcliff 0.405 0.427 0.525 0.468

RMSE 0.771 0.752 0.688 0.729

Correlation coefficient 0.641 0.656 0.728 0.695

Best predictors without Persian Gulf SST Nash–Sutcliff 0.519 0.441 0.358 0.372

RMSE 0.693 0.742 0.800 0.792

Correlation coefficient 0.746 0.683 0.615 0.709

Best predictors with Persian Gulf SST Nash–Sutcliff 0.526 0.508 0.722 0.601

RMSE 0.688 0.697 0.526 0.632

Correlation coefficient 0.832 0.784 0.875 0.864
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this case lead to maximum Nash–Sutcliff and minimum

RMSE. In addition, in this case, there is maximum CORR

between observed and estimated streamflows. It is worth

noting that applying each of the climate variables of the

best predictors singly results in less accuracy than applying

all the best predictors. For example, the results of case 2 for

Tang Mashooreh have been obtained from the use of only

winter SST of Persian Gulf as a single predictor. In Fig. 6,

the estimated inflow to Garsha (a), Tang Mashooreh (b),

Seimareh (c), and Karkheh (d) reservoirs for the three cases

of predictors in April has been illustrated and compared

with the actual inflow.

The assessment criteria in Table 7 indicate that the use

of only autumn SST of Persian Gulf as predictor for

streamflow forecasting (case 1) in May results in better

results for Seimareh and Karkheh in comparison with the

use of other best predictors (case 2). In contrary, for

Garsha and Tang Mashooreh, the results of case 2 are

better than case 1. However, the assessment criteria in

Table 7 demonstrate that, like April, applying autumn SST

of Persian Gulf along with other best predictors (case 3)

results in the best forecasts in comparison with two other

cases for all reservoirs. Figure 7 shows the estimated

inflow to Garsha (a), Tang Mashooreh (b), Seimareh (c),

and Karkheh (d) reservoirs in May for the three cases of

predictors, while they have been compared with the actual

inflow.

Summary and conclusion

In this study, the combined effect of seasonal Sea Surface

Temperature (SST) of Persian Gulf andMediterranean Sea

on operational streamflow forecasting in Karkheh basin in

spring months was investigated regionally. For this pur-

pose, forecasting of the monthly inflow to four reservoirs in

this basin, each of which collects the outflow of a subbasin,

was considered. Besides, in this paper with the goal of

reducing the forecasting errors, rather than doing two

process, including forecasting of precipitation and rainfall-

runoff modeling to achieve the streamflow forecasting, the

direct effect of Mediterranean Sea and Persian Gulf SST

on streamflow forecasting has been studied.

The research was done in three steps. In the first step, the

singular value decomposition (SVD) method was used to

determine the effective nodes of Mediterranean Sea and

Persian Gulf on the climate of the subbasins of Karkheh

basin and to produce the most correlated time series of SST

with the streamflow of each subbbasin. Besides, this

method was applied to create rainfall time series of rain

Fig. 6 Estimated inflow to Garsha (a), Tang Mashooreh (b), Seimareh (c), and Karkheh (d) reservoirs in April according to the three states of

predictors
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stations, such that they had higher correlation with the

inflow to each reservoir than the average of the rainfall of

the stations.

In the second step, the appropriate predictors for fore-

casting the inflow to each reservoir were determined from

the seasonal projected series of SST and hydrological and

meteorological data based on two evaluation criteria,

including: correlation coefficient (R2) and MMI index

which is based on Mutual Information (MI) and entropy

rules.

In the last step, the best predictors were determined for

each reservoir from several combinations of the appropri-

ate predictors based on the cross-validation analysis for the

results of GRNN model.

The results indicated that all the nodes of Persian Gulf

and Mediterranean Sea affect the study region, because the

SCF of first mode was above 95 % in all the cases.

In addition, autumn SSTs of Mediterranean Sea and

Persian Gulf were detected as effective predictors for

forecasting the inflow to all reservoirs in Karkheh basin in

April and May, respectively. The results also revealed that

winter SST of Persian Gulf affected the streamflow in the

east and south regions (Tang Mashooreh and Karkheh

subbasins) of Karkheh basin in April, while the inflow to

Garsha reservoir in April and May was affected by summer

SST of Persian Gulf. All the results of this research were

compatible with the previous research (Nazemosadat 1998;

Nazemosadat 2008; Meidani and Araghinejad 2014). In

addition, the obtained results showed that the best predictor

for forecasting the inflow to all reservoirs in June was the

inflow to them in May.

The assessment of the results of the GRNN model

parameter (Spread parameter) indicated that for June,

model approximated closely the functions between pre-

dictor and predicted variables, while for two other months,

smoother function approximation has been done by the

model. The evaluation of the results of Spread parameter

with respect to the number of predictors for each reservoir

and month showed that when the number of predictors

increased, the optimum value of the Spread parameter was

also increased, and as a result, smoother functions were

approximated by the model.

Considering the results of this study, it can be concluded

that:

• The SSTs of Persian Gulf and Mediterranean Sea in

autumn are effective predictors for spring streamflow

forecasting in all the subbasins in Karkheh basin,

because they affect winter precipitation throughout the

basin and spring streamflow is affected by winter

precipitation.

Fig. 7 Estimated inflow to Garsha (a), Tang Mashooreh (b), Seimareh (c), and Karkheh (d) reservoirs in May according to the three states of

predictors
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• Summer SST of Persian Gulf has been detected as an

effective predictor for streamflow forecasting in April

and May in snowy regions. It may be due to the effect

of Summer SST on air temperature in the next spring,

and as a result, it affects the amount of snow melting.

• It has been detected that winter SST of Persian Gulf is

an effective predictor for streamflow forecasting in

April in the east and south regions of Karkheh basin,

because it affects winter precipitation in this region.

• The combination of the Mediterranean Sea SST and

Persian Gulf SST affects the streamflow in almost all

the regions of the basin in April, while the streamflow

in May is affected by Persian Gulf SST.

• Although several variables have high correlation with

the streamflow in June, the streamflow in May is the

most effective predictor for forecasting the streamflow

in June throughout the basin. It is due to the fact that

Karkheh basin is located in a semiarid region, where a

significant precipitation does not occur from the late of

May to the late of Octobr. Therefore, as the climate

variations affect the precipitation and, consequently,

the streamflow, the inflow to the reservoirs in June is

not affected by the precipitation and the climate

indices.

• The north and west regions of Karkheh basin (Garsha

and Seimareh subbasins) have similar pattern of the

best predictors for operational streamflow forecasting.

Likewise, the best predictors of the east and south

regions of this basin (Tang Mashooreh and Karkheh

subbasins) are similar in all the spring months.

All in all, as a final conclusion of the obtained results of

this study, it can be said that:

1. The regional streamflows in Karkheh basin in April

and May are affected by the SST ofMediterranean Sea

and Persian Gulf and the appropriate accuracy of the

operational forecasting results indicate that the climate

variables are applicable and effective predictors for

operational streamflow forecasting in regional scale if

the naturalized streamflow, affected directly by pre-

cipitation, is applied.

2. The good results of forecasting the naturalized stream-

flow using climate indices indicate that this approach

can be used to streamflow forecasting rather than doing

two process, including the forecasting of precipitation

and rainfall-runoff modeling.

3. In a large basin with several climate, the effect of

climate variations on the meteorological and hydro-

logical responses of the basin can be different; such

that in the mountainous region of the Karkheh basin,

the effect of summer SST of Persian Gulf has been

detected on the streamflow in April and May, which

may be due to its effect on air temperature in the next

spring and, consequently, its effect on the amount of

snow melting, while it has not affected the streamflows

of other regions of the basin.

4. In Karkheh basin, the pattern of streamflow predictors

for spring months in the north and west regions which

are mountainous area with cold winters and mild

summers is similar, while the east and south regions of

the basin which are semiarid area with mild winters

and long and warm summers also have similar pattern

of predictors for spring months.

5. With respect to the results of the previous studies

(Nazemosadat 1998; Nazemosadat 2008; Meidani

and Araghinejad 2014) proved that winter precipita-

tion in the west of Iran is affected by autumn SST of

Mediterranean Sea and Persian Gulf and the

obtained results in this study, it can be concluded

that the naturalized streamflow in the Karkheh basin

in spring is directly affected by the precipitation in

winter.

6. As the Sudan current from the Persian Gulf and the

moist air masses originated from Mediterranean Sea

affect the precipitation in south and west of Iran in

winter on the one hand, and on the other hand, in the

previous studies and in the current study, it has been

proved that the SST of Mediterranean Sea and Persian

Gulf in autumn affects the winter precipitation and,

consequently, spring streamflows, it can be suggest

that probably, there is a relation between the SST of

theMediterranean Sea and Persian Gulf in autumn and

the formation of rainy air masses in winter which

affects the winter rainfall in Iran. It is recommended

that the hypothesis be survey in another research.

7. The GRNN model which enjoys a radial basis function

is able to approximate the complicated functions

between several predictors and predicted variables

and produces the forecasting results with the appro-

priate accuracy in monthly scale.

Finally, it is recommended that a research be also done

using the wavelet transform analysis for preprocessing the

inputs of forecasting model and the accuracy of the

achieved results be compared with the current research.

Moreover, it is suggested that in another study, the relation

between the climate indices and snow cover area, resulted

from MODIS/AVHRR images, be investigated.

Acknowledgments The authors are grateful to the University of

Tehran for providing the necessary facilities for this study.

References

Anctil F, Rat A (2005) Evaluation of neural network streamflow

forecasting on 47 watersheds. J Hydrol Eng 10(1):85–88

Sustain. Water Resour. Manag. (2016) 2:387–403 401

123



Araghinejad S (2014) Data-driven modeling: using MATLAB� in

water resources and environmental engineering. Water science

and technology library, vol 67. Springer, Netherlands

Araghinejad S, Burn DH, Karamouz M (2006) Long-lead probabilis-

tic forecasting of streamflow using ocean-atmospheric and

hydrological predictors. J Water Resour Res 42(3):W03431.

doi:10.1029/2004WR003853

Azimi M, Golpaygani F, Tajrishy M, Abrishamchi A (2011) Seasonal

prediction of Karoon streamflow using large-scale indices.

World Environ Water Resour Congress 1184–1193

Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of

methods for finding coupled patterns in climate data. J Climate

5:541–560

Cigizoglu HK (2005) Generalized regression neural network in

monthly flow forecasting. J Civil Eng Environ Syst 22(2):71–81

Cigizoglu HK, Alp M (2004) Rainfall-runoff modelling using three

neural network methods. J Artificial Intell Soft Comput

3070:166–171

Clark CO, Cole JE, Webster PJ (2000) Indian Ocean SST and Indian

summer rainfall: predictive relationships and their decadal

variability. J Climate 13:2503–2519

Dezfuli AK, Karamouz M, Araghinejad S (2010) On the relationship

of regional meteorological drought with SOI and NAO over

southwest Iran. Theoret Appl Climatol 100:57–66

Gamiz-Fortis SR, Esteban-Parra MJ, Trigo RM, Castro-Diez Y (2010)

Potential predictability of an Iberian river flow based on its

relationship with previous winter global SST. J Hydrol

385:143–149

Gray RM (2013) Entropy and information theory. Springer-Verlag,

NewYork

Hamlet A, Lettenmaier D (1999) Columbia river streamflow

forecasting based on ENSO and PDO climate signals. J Water

Resour Plann Manage 125(6):333–341

Hosseini-Moghari SM, Araghinejad S (2015) Monthly an seasonal

drought forecasting using statistical neural networks. Environ

Earth Sci 74(1):397–412

Karla A, Ahmad S (2009) Using oceanic-atmospheric oscillations for

long lead time streamflow forecasting. J Water Resour Res

45:W03413. doi:10.1029/2008WR006855

Kassomenos PA, McGregor GR (2006) The inter annual variability

and trend of precipitable water over Southern Greece. J Hydrom-

eteorol 7:271–284

Kendrew WG (1922) The climates of the continents. Oxford

University Press

Khalili A (1992) Fundamental study of Iranian water resources,

climatological understanding of Iran, Parts 1 and 2. Jamab

consultant reports, the Iranian Ministry of Energy (in Persian)
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